题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚类,聚成普通驾驶类型,激进类型和超冷静型3类 。 利用Python的scikit-learn包中的Kmeans算法进行聚类算法的应用练习。并利用scikit-learn包中的PCA算法来对聚类后的数据进行降维,然后画图展示出聚类效果。通过调节聚类算法的参数,来观察聚类效果的变化,练习调参。

数据介绍: 选取某一个驾驶员的经过处理的数据集trip.csv,将该驾驶人的各个时间段的特征进行聚类。(注:其中的driver 和trip_no 不参与聚类)

字段介绍: driver :驾驶员编号;trip_no:trip编号;v_avg:平均速度;v_var:速度的方差;a_avg:平均加速度;a_var:加速度的方差;r_avg:平均转速;r_var:转速的方差; v_a:速度level为a时的时间占比(同理v_b , v_c , v_d ); a_a:加速度level为a时的时间占比(同理a_b, a_c); r_a:转速level为a时的时间占比( r_b, r_c)

聚类算法要求

(1)统计各个类别的数目

(2)找出聚类中心

(3)将每条数据聚成的类别(该列命名为jllable )和原始数据集进行合并,形成新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

降维算法要求:

(1)将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca

(2)画图来展示聚类效果(可用如下代码):

 import matplotlib.pyplot asplt

d = new_pca[new_df['jllable'] == 0]

plt.plot(d[0], d[1], 'r.')

d = new_pca[new_df['jllable'] == 1]

plt.plot(d[0], d[1], 'go')

d = new_pca[new_df['jllable'] == 2]

plt.plot(d[0], d[1], 'b*')

plt.gcf().savefig('D:/workspace/python/Practice/ddsx/kmeans.png')

plt.show()

python实现代码如下:

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt df=pd.read_csv('trip.csv', header=0, encoding='utf-8')
df1=df.ix[:,2:]
kmeans = KMeans(n_clusters=3, random_state=10).fit(df1)
df1['jllable']=kmeans.labels_
df_count_type=df1.groupby('jllable').apply(np.size) ##各个类别的数目
df_count_type
##聚类中心
kmeans.cluster_centers_
##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。
new_df=df1[:]
new_df
new_df.to_csv('new_df.csv') ##将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca
pca = PCA(n_components=2)
new_pca = pd.DataFrame(pca.fit_transform(new_df)) ##可视化
d = new_pca[new_df['jllable'] == 0]
plt.plot(d[0], d[1], 'r.')
d = new_pca[new_df['jllable'] == 1]
plt.plot(d[0], d[1], 'go')
d = new_pca[new_df['jllable'] == 2]
plt.plot(d[0], d[1], 'b*')
plt.gcf().savefig('kmeans.png')
plt.show()

运行结果如下:

   ##各个类别的数目

    ##聚类中心

    ##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

    ##可视化------kmeans.png

利用python的KMeans和PCA包实现聚类算法的更多相关文章

  1. 【转】利用python的KMeans和PCA包实现聚类算法

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7094005.html 题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚 ...

  2. 机器学习实战之 第10章 K-Means(K-均值)聚类算法

    第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K- ...

  3. 【机器学习实战】第 10 章 K-Means(K-均值)聚类算法

    第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K- ...

  4. 【机器学习实战】第10章 K-Means(K-均值)聚类算法

    第 十 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K-M ...

  5. K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...

  6. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  7. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  8. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  9. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

随机推荐

  1. Mongodb 安装(Windows)

  2. 摘抄JPA官方文档原文 防呆

    Spring Data JPA - Reference Documentation Oliver GierkeThomas DarimontChristoph StroblMark PaluchVer ...

  3. java appium webview切换处理

    Set<String> contexts = driver.getContextHandles(); for(String item :contexts){ // NATIVE_APP / ...

  4. django -- verbose_name的对数据库层面的影响

    一.没有verbose_name时model的定义: from django.db import models # Create your models here. class Question(mo ...

  5. jumpserver 3.2修改排序规则

    在默认的情况下,我们使用jumpserver的时候 这里我使用xshell 客户端连接到堡垒机的时候, 这里我的显示规则是根据IP排序的,但是我这里的服务器的hostname 都是根据场景设置的hos ...

  6. ios之清除cell缓存,解决cell的重用问题。

    tableView表格中的cell有重用机制,这是一个很好的东西,可以避免开辟很多的空间内存.但是有时候我们不想让它重用cell,,可以用以下的代码解决. 将这个代码放在: - (UITableVie ...

  7. SerDes、RocketIO、GTX

    1.SerDes:serdes = serial and deserial,就是组串器与解串器,也就是通用的高速IO. GTX,GTP,GTH等都是SERDES,只是速率不一样,XILINX叫其不同的 ...

  8. rdesktop 指定服务器的分频率

    rdesktop -uAdministrator -g 1265x728 10.100.0.225 &

  9. distinct aggregation

    https://docs.google.com/document/d/1zj6OA-K2hi7ah8Fo-xTQB-mVmYfm6LsN2_NHgTCVmJI/edit# https://issues ...

  10. Nginx 权限问题

    At my job we are moving to Nginx for the load balancing of our sites. Nginx is a very powerful load ...