题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚类,聚成普通驾驶类型,激进类型和超冷静型3类 。 利用Python的scikit-learn包中的Kmeans算法进行聚类算法的应用练习。并利用scikit-learn包中的PCA算法来对聚类后的数据进行降维,然后画图展示出聚类效果。通过调节聚类算法的参数,来观察聚类效果的变化,练习调参。

数据介绍: 选取某一个驾驶员的经过处理的数据集trip.csv,将该驾驶人的各个时间段的特征进行聚类。(注:其中的driver 和trip_no 不参与聚类)

字段介绍: driver :驾驶员编号;trip_no:trip编号;v_avg:平均速度;v_var:速度的方差;a_avg:平均加速度;a_var:加速度的方差;r_avg:平均转速;r_var:转速的方差; v_a:速度level为a时的时间占比(同理v_b , v_c , v_d ); a_a:加速度level为a时的时间占比(同理a_b, a_c); r_a:转速level为a时的时间占比( r_b, r_c)

聚类算法要求

(1)统计各个类别的数目

(2)找出聚类中心

(3)将每条数据聚成的类别(该列命名为jllable )和原始数据集进行合并,形成新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

降维算法要求:

(1)将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca

(2)画图来展示聚类效果(可用如下代码):

 import matplotlib.pyplot asplt

d = new_pca[new_df['jllable'] == 0]

plt.plot(d[0], d[1], 'r.')

d = new_pca[new_df['jllable'] == 1]

plt.plot(d[0], d[1], 'go')

d = new_pca[new_df['jllable'] == 2]

plt.plot(d[0], d[1], 'b*')

plt.gcf().savefig('D:/workspace/python/Practice/ddsx/kmeans.png')

plt.show()

python实现代码如下:

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt df=pd.read_csv('trip.csv', header=0, encoding='utf-8')
df1=df.ix[:,2:]
kmeans = KMeans(n_clusters=3, random_state=10).fit(df1)
df1['jllable']=kmeans.labels_
df_count_type=df1.groupby('jllable').apply(np.size) ##各个类别的数目
df_count_type
##聚类中心
kmeans.cluster_centers_
##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。
new_df=df1[:]
new_df
new_df.to_csv('new_df.csv') ##将用于聚类的数据的特征的维度降至2维,并输出降维后的数据,形成一个dataframe名字new_pca
pca = PCA(n_components=2)
new_pca = pd.DataFrame(pca.fit_transform(new_df)) ##可视化
d = new_pca[new_df['jllable'] == 0]
plt.plot(d[0], d[1], 'r.')
d = new_pca[new_df['jllable'] == 1]
plt.plot(d[0], d[1], 'go')
d = new_pca[new_df['jllable'] == 2]
plt.plot(d[0], d[1], 'b*')
plt.gcf().savefig('kmeans.png')
plt.show()

运行结果如下:

   ##各个类别的数目

    ##聚类中心

    ##新的dataframe,命名为new_df ,并输出到本地,命名为new_df.csv。

    ##可视化------kmeans.png

利用python的KMeans和PCA包实现聚类算法的更多相关文章

  1. 【转】利用python的KMeans和PCA包实现聚类算法

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7094005.html 题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚 ...

  2. 机器学习实战之 第10章 K-Means(K-均值)聚类算法

    第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K- ...

  3. 【机器学习实战】第 10 章 K-Means(K-均值)聚类算法

    第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K- ...

  4. 【机器学习实战】第10章 K-Means(K-均值)聚类算法

    第 十 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K-M ...

  5. K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...

  6. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  7. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  8. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  9. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

随机推荐

  1. 来设置IE兼容模式

    来设置IE兼容模式 文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 前言 为了帮助确保你的网页在所有未来的IE版本 ...

  2. 【转】Oracle回收站(recyclebin)

    我们都比较熟悉windows中的回收站,文件删除后放到回收站里还可以再复原.Oracle回收站的原理完全一样,只是实现的细节方面有些差异.另外回收站中只能回收表和相关的对象包括索引.约束.触发器.嵌套 ...

  3. [转]Tomcat中的Session小结

    阅读目录 什么是Session Session的目的 实现机制 Tomcat中的session实现 session存在的问题 什么是Session 对Tomcat而言,Session是一块在服务器开辟 ...

  4. Java 8 – Filter a Map examples

    Java 8 – Filter a Map examplesFew Java examples to show you how to filter a Map with Java 8 stream A ...

  5. 验证码识别 图像降噪 Python (一)

    原始图片: 降噪后的图片 实现代码: # coding:utf-8 import sys, os from PIL import Image, ImageDraw # 二值数组 t2val = {} ...

  6. DataGridView控件使用大全说明-各种常用操作与高级操作

    DataGridView控件 DataGridView是用于Windows Froms 2.0的新网格控件.它可以取代先前版本中DataGrid控件,它易于使用并高度可定制,支持很多我们的用户需要的特 ...

  7. ubuntu14.4.4安装smb服务实现文件共享

    1.软件安装,ubuntu14需要安装的软件有3个 安装服务前养成习惯 sudo apt-get upgrade 首先切换到超级用户  su - root sudo apt-get install s ...

  8. django 自动化测试的故障排查

    [问题背景] django使用mysql做为后台数据库.在使用django的自动化测试命令test时报如下错误 python3 manage.py test polls Creating test d ...

  9. 安装Flume的时候出现File Channel transaction capacity cannot be greater than the capacity of the channel capacity -解决方案 摘自网络

    部署flume集群时,在启动collector服务器没报错,启动agent服务器报错: File Channel transaction capacity cannot be greater than ...

  10. 关于的 recorder robotium 的Eclipse插件(URL:http://recorder.robotium.com/updates/或者说不可用)

    最近在学robotium.看到别人说robotium的Eclipse的插件非常好用. 打算安装时.发现死活都无法连接http://recorder.robotium.com/updates/ 过程是  ...