【MLE】最大似然估计Maximum Likelihood Estimation
已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。
假设模型满足某种总体分布,但是不知道模型的参数,通过样本去估计参数。
最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。
最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:
首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为
回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:
在实际应用中常用的是两边取对数,得到公式如下:
其中称为对数似然,而
称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:
假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?
我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,
P(Data | M)
= P(x1,x2,…,x100|M)
= P(x1|M)P(x2|M)…P(x100|M)
= p^70(1-p)^30.
那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。
70p^69(1-p)^30-p^70*30(1-p)^29=0。
解方程可以得到p=0.7。
在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。
假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?
P(Data | M) = ?
根据公式
可得:
对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n
由上可知最大似然估计的一般求解过程:
(1) 写出似然函数;
(2) 对似然函数取对数,并整理;
(3) 求导数 ;
(4) 解似然方程
注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。
【MLE】最大似然估计Maximum Likelihood Estimation的更多相关文章
- Maximum Likelihood及Maximum Likelihood Estimation
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...
- 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...
- Linear Regression and Maximum Likelihood Estimation
Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...
- 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...
- 最大似然估计(Maximum likelihood estimation)
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...
- 最大似然预计(Maximum likelihood estimation)
一.定义 最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...
- 最大似然估计(Maximum likelihood estimation)(通过例子理解)
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...
- 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)
maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...
- MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation
Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...
随机推荐
- 基于js利用经纬度进行两地的距离计算(转)
转自:http://www.storyday.com/html/y2009/2212_according-to-latitude-and-longitude-distance-calculation- ...
- 【JavaScript】浅析ajax的使用
目录结构: contents structure [+] Ajax简介 Ajax的工作原理 Ajax的使用步骤 使用原生的js代码 使用JQuery代码 JQuery中常用的Ajax函数 $.ajax ...
- OpenCV 学习笔记03 drawContours函数
opencv-python 4.0.1 轮廓的绘制或填充. cv2.drawContours(image, contours, contourIdx, color[, thickness[, li ...
- C++的坑真的多吗?
先说明一下,我不希望本文变成语言争论贴.希望下面的文章能让我们客观理性地了解C++这个语言.(另,我觉得技术争论不要停留在非黑即白的二元价值观上,这样争论无非就是比谁的嗓门大,比哪一方的观点强,毫无价 ...
- [转]Java中Runtime.exec的一些事
0 预备知识 1 不正确的调用exitValue 2不正确的调用waitFor 3 一种可接受的调用方式 4 调用认为是可执行程序的时候容易发生的错误 5 window执行的良好示例 6 不良好的重定 ...
- A标签实现文件下载功能
<a>可直接下载xls,doc,rar,zip,exe,js文件(图片跟txt文件是直接打开的) <a href="wKioJlJolKeCIzkCADd3Wf7OPI42 ...
- HTTP 请求头 详解
转载:https://kb.cnblogs.com/page/92320/ HTTP(HyperTextTransferProtocol)即超文本传输协议,目前网页传输的的通用协议.HTTP协议采用了 ...
- 【转】WARNING! File system needs to be upgraded. You have version null and I want version 7. Run the '${HBASE_HOME}/bin/hbase migrate' script. 的解决办法
前段时间集群出问题,hadoop和hbase启动不了了. 后来hadoop回复了,hbase死活master无法启动.打开日志发现报了以下错误: WARNING! File system needs ...
- CentOS 6.5 搭建NFS文件服务器
环境介绍:服务器: 192.168.0.1客户机: 192.168.0.2安装软件包:服务器和客户机都要安装nfs 和 rpcbind 软件包:yum -y install nfs-utils rpc ...
- 冰淇淋三明治 (Android 4.0)介绍
原文:http://android.eoe.cn/topic/summary 冰淇淋三明治 (Android 4.0) 是 Android 在设计上的一个里程碑.它将 Honeycomb 提供给平板的 ...