模型已定,参数未知

  已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

假设模型满足某种总体分布,但是不知道模型的参数,通过样本去估计参数。

最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。

最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:

首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:

  

  在实际应用中常用的是两边取对数,得到公式如下:

  其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

  

假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

    P(Data | M)

     = P(x1,x2,…,x100|M)

     = P(x1|M)P(x2|M)…P(x100|M)

     = p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

    70p^69(1-p)^30-p^70*30(1-p)^29=0。

    解方程可以得到p=0.7。

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

    P(Data | M) = ?

根据公式

   

  可得:

  对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n

由上可知最大似然估计的一般求解过程:

  (1) 写出似然函数;

  (2) 对似然函数取对数,并整理;

  (3) 求导数 ;

  (4) 解似然方程

注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。

【MLE】最大似然估计Maximum Likelihood Estimation的更多相关文章

  1. Maximum Likelihood及Maximum Likelihood Estimation

    1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...

  2. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  3. Linear Regression and Maximum Likelihood Estimation

    Imagination is an outcome of what you learned. If you can imagine the world, that means you have lea ...

  4. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  5. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  6. 最大似然预计(Maximum likelihood estimation)

    一.定义     最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...

  7. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  8. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  9. MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation

    Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...

随机推荐

  1. 【LeetCode】221. Maximal Square

    Maximal Square Given a 2D binary matrix filled with 0's and 1's, find the largest square containing ...

  2. 工作8年对技术学习过程的一些 总结 与 感悟 为什么有时迷茫、无奈 学习编程语言的最高境界最重要的是编程思想 T 字发展 学技术忌讳”什么都会“ 每天进步一点等式图 时间管理矩阵

    工作这些年对技术学习过程的一些 总结 与 感悟(一) 引言 工作了8年,一路走来总有些感触时不时的浮现在脑海中.写下来留个痕迹,也顺便给大家一点参考.希望能给初学者一点帮助. 入门 进入计算机行业,起 ...

  3. 归并排序(C++实现)

         归并排序是利用"归并"技术来进行排序.归并是指将若干个已排序的子文件合并成一个有序的文件.常见的归并排序有两路归并排序(Merge Sort),多相归并排序(Polyph ...

  4. Android文件的读写

    Android的文件读写与JavaSE的文件读写相同,都是使用IO流.而且Android使用的正是JavaSE的IO流,下面我们通过一个练习来学习Android的文件读写. 1.创建一个Android ...

  5. easyui datagrid加载数据的三种方式

    1.加载本地数据 var obj = {"total":2,"rows":[{id:"1",name:"一"},{id: ...

  6. 跟我学SharePoint 2013视频培训课程——什么是SharePoint 2013(1)

    课程简介 第一天,介绍什么是SharePoint 2013. 视频 SharePoint 2013 交流群 41032413

  7. 图床神器:七牛云 + Mpic + FScapture

    概述 最近在搞Markdown的东西,遇到了一个很棘手的问题,即图片的显示:通用的图片,可以直接网上搜索,但有时候需要自己截一些图或者对下载的图片进行修改,在本地存储完全没有问题,但Markdown写 ...

  8. Python 文件 tell() 方法

    描述 Python 文件 tell() 方法返回文件的当前位置,即文件指针当前位置. 语法 tell() 方法语法如下: fileObject.tell() 参数 无 返回值 返回文件的当前位置. 实 ...

  9. SqlExcel使用文档及源码

    昨天帮朋友做了个小工具,以完成多表连接处理一些数据.今天下班后又做了份使用文档,不知友能看懂否?现将使用文档及源码发布如下,以供有同样需求的朋友下载. 使用文档 一.增.改.查.删 1.增(向shee ...

  10. CentOS7.2安装pure-ftpd 及其配置项

    CentOS7.2安装FTP(pure-ftpd-1.0.43) 原文链接: https://www.linuxidc.com/Linux/2016-10/135971.htm [日期:2016-10 ...