1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-高斯混合模型GMM详细代码实现

5. EM算法-高斯混合模型GMM+Lasso

1. 前言

EM的前3篇博文分别从数学基础、EM通用算法原理、EM的高斯混合模型的角度介绍了EM算法。按照惯例,本文要对EM算法进行更进一步的探究。就是动手去实践她。

2. GMM实现

我的实现逻辑基本按照GMM算法流程中的方式实现。需要全部可运行代码,请移步我的github

输入:观测数据\(x_1,x_2,x_3,...,x_N\)

对输入数据进行归一化处理

#数据预处理
def scale_data(self):
for d in range(self.D):
max_ = self.X[:, d].max()
min_ = self.X[:, d].min()
self.X[:, d] = (self.X[:, d] - min_) / (max_ - min_)
self.xj_mean = np.mean(self.X, axis=0)
self.xj_s = np.sqrt(np.var(self.X, axis=0))

输出:GMM的参数

  1. 初始化参数
#初始化参数
def init_params(self):
self.mu = np.random.rand(self.K, self.D)
self.cov = np.array([np.eye(self.D)] * self.K) * 0.1
self.alpha = np.array([1.0 / self.K] * self.K)
  1. E步:根据当前模型,计算模型\(k\)对\(x_i\)的影响

\[\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
\]

#e步,估计gamma
def e_step(self, data):
gamma_log_prob = np.mat(np.zeros((self.N, self.K)))
for k in range(self.K):
gamma_log_prob[:, k] = log_weight_prob(data, self.alpha[k], self.mu[k], self.cov[k])
log_prob_norm = logsumexp(gamma_log_prob, axis=1)
log_gamma = gamma_log_prob - log_prob_norm[:, np.newaxis]
return log_prob_norm, np.exp(log_gamma)
  1. M步:计算\(\mu_{k+1},\Sigma_{k+1}^2,\pi_{k+1}\)。

\[n_k=\sum_{i=1}^N\gamma_{ik}
\]

\[\mu_{k+1}=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
\]

\[\Sigma_{k+1}^2=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
\]

\[\pi_{k+1}=\frac{n_k}{N}
\]

#m步,最大化loglikelihood
def m_step(self):
newmu = np.zeros([self.K, self.D])
newcov = []
newalpha = np.zeros(self.K)
for k in range(self.K):
Nk = np.sum(self.gamma[:, k])
newmu[k, :] = np.dot(self.gamma[:, k].T, self.X) / Nk
cov_k = self.compute_cov(k, Nk)
newcov.append(cov_k)
newalpha[k] = Nk / self.N
newcov = np.array(newcov)
return newmu, newcov, newalpha
  1. 重复2,3两步直到收敛

最后加上loglikelihood的计算方法。

  • 基本的计算方法按照公式定义。

\[L(\theta) = \sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}Q_i(z^{(i)})P(x^{(i)},z^{(i)}|\theta)\;\;\;s.t.\sum\limits_{z}Q_i(z^{(i)}) =1
\]

实现如下

def loglikelihood(self):
P = np.zeros([self.N, self.K])
for k in range(self.K):
P[:,k] = prob(self.X, self.mu[k], self.cov[k]) return np.sum(np.log(P.dot(self.alpha)))

但是这样的实现会有2个问题。

  1. 非矩阵运算,速度慢。
  2. 非常容易underflow,因为\(P.dot(self.alpha)\)非常容易是一个很小的数,系统把它当作0处理。
  • 使用以下\(LogSumExp\)公式进行改进,并且令\(a_h = log(Q_i(z^{(i)}))+log(P(x^{(i)},z^{(i)}|\theta))\),具体实现看github

\[log(\sum_hexp(a_h)) = m + log(\sum_hexp(a_h - m))\;\;\;m=max(a_h)
\]

3. 总结

首先gmm算法会很容易出现underflow和overflow,所以处理的时候有点麻烦。但是\(LogSumExp\)能解决大部分这个问题。还有就是我的实现方式是需要协方差矩阵一定要是正定矩阵,所以我的代码中也做了处理。我们好想还不能够满足于最基础的GMM算法,所以在下一篇文章中我们要对GMM加入一个惩罚项,并且用对角矩阵的方式代替协方差矩阵。

4. EM算法-高斯混合模型GMM详细代码实现的更多相关文章

  1. 6. EM算法-高斯混合模型GMM+Lasso详细代码实现

    1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...

  2. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

  3. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  4. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  5. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  6. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  7. 高斯混合模型 GMM

    本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) =  \frac{\sum_{i=1}^N( X_ ...

  8. Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

  9. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

随机推荐

  1. HDU 1850 Being a Good Boy in Spring Festival (Nim博弈)

    Being a Good Boy in Spring Festival Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32 ...

  2. 【Servlet】web.xml中welcome-file-list的作用

    今天尝试使用struts2+ urlrewrite+sitemesh部署项目,结果发现welcome-file-list中定义的欢迎页不起作用: <welcome-file-list> & ...

  3. 使用Nexus搭建Maven内部服务器

    概述         我们在使用maven时,一般通过网络上一些公共的maven仓库来获取jar包,但是有时候会碰到网速比较慢的情况就比较郁闷,Nexus是一个maven的服务器,可以让我们搭建一个本 ...

  4. Spring 注解 hibernate 实体方法 <property name="packagesToScan" value="com.sise.domain"/>

    <property name="annotatedClasses"> <list> <value>com.sise.domain.Admin&l ...

  5. ural 1091. Tmutarakan Exams(容斥)

    http://acm.timus.ru/problem.aspx? space=1&num=1091 从1~s中选出k个数,使得k个数的最大公约数大于1,问这种取法有多少种. (2<=k ...

  6. SharePoint 2013 Designer工作流——Parallel Block的应用

    参考目录 安装和配置SharePoint 2013 Workflow SharePoint 2013 实现多级审批工作流 在自定义Workflow时,往往会遇到这样场景,某个审批需要被多人查阅,每个查 ...

  7. javascript some()函数用法详解

    参数说明callback: 要对每个数组元素执行的回调函数.thisObject : 在执行回调函数时定义的this对象. 功能说明对数组中的每个元素都执行一次指定的函数(callback),直到此函 ...

  8. Excel列添加单引号

    ="'"&A2&"',"   对A2列同步添加单引号

  9. AR模型与数据平稳性之间的关系

    作者:桂. 时间:2017-12-19  21:39:08 链接:http://www.cnblogs.com/xingshansi/p/8068021.html 前言 前几天碰到一个序列分析的问题, ...

  10. Kinect v2 记录

    最多可同时识别跟踪 6 人,每人可识别到 25 个关节数据.可以根据上身 10 个关节数据来判断坐姿状态. 物理极限识别范围:0.5m – 4.5m,最佳识别范围:0.8m – 3.5m. 深度数据可 ...