题目链接:https://cn.vjudge.net/problem/CodeForces-894B

Ralph has a magic field which is divided into n × m blocks. That is to say, there are n rows and m columns on the field. Ralph can put an integer in each block. However, the magic field doesn't always work properly. It works only if the product of integers in each row and each column equals to k, where k is either 1 or -1.

Now Ralph wants you to figure out the number of ways to put numbers in each block in such a way that the magic field works properly. Two ways are considered different if and only if there exists at least one block where the numbers in the first way and in the second way are different. You are asked to output the answer modulo 1000000007 = 109 + 7.

Note that there is no range of the numbers to put in the blocks, but we can prove that the answer is not infinity.

Input

The only line contains three integers nm and k (1 ≤ n, m ≤ 1018k is either 1 or -1).

Output

Print a single number denoting the answer modulo 1000000007.

Example

Input
1 1 -1
Output
1
Input
1 3 1
Output
1
Input
3 3 -1
Output
16

Note

In the first example the only way is to put -1 into the only block.

In the second example the only way is to put 1 into every block.

题意:

给出一个n*m的方格矩阵,给定k=-1或1,在所有方格里面填上-1或1,使得每行每列的乘积都为k,则算作一种方案,求总共有多少种不同方案。

题解:

①当n+m为奇数,k=-1时,方案数=0;

 因为这时,n和m必然为一奇一偶,不妨设n为奇数,m为偶数;

 则在每一行上必然要放奇数个-1,那么这样可以知道-1的总个数是偶数(奇数行,每行奇数个-1);

 但是,同时每一列上也要放奇数个-1,那么-1的总个数是奇数(偶数列,每列奇数个-1);

 互相矛盾,所以不存在这样的方案。

②其他情况下,存在至少一种方案,此时我们设有矩阵A[n][m]:

  a[1][1] …………………… a[1][m-1] a[1][m]

  ……………………………………………………

  ……………………………………………………

  a[n-1][1] ………………    a[n-1][m-1]   a[n-1][m]

  a[n][1] …………………… a[n][m-1] a[n][m]

 此时矩阵A[n-1][m-1]里面可以随意填入1或者-1,则对应的 a[n][1] ~ a[n-1][m] 和 a[1][m] ~ a[n-1][m] 需要取-1或者1来使得行列为k;

 例如:,因为,所以  和 ,所以a[n][m]存在,所以方案存在。

 因此我们不能难算出方案数为

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = ;
ll n,m;int k;
ll fpow(ll a,ll b){//快速幂
ll r=,base=a%MOD;
while(b){
if(b&) r*=base , r%=MOD;
base*=base;
base%=MOD;
b>>=;
}
return r;
}
int main()
{
cin>>n>>m>>k;
if(k==- && (n+m)%==)
{
printf("0\n");
return ;
} ll ans=fpow(,n-);
ans=fpow(ans,m-);
cout<<ans<<endl;
}

PS.显然最大10^18数量级的n和m直接乘起来肯定爆炸longlong,所以分两次快速幂即可。

PS2.此处#include<bits/stdc++.h>的话,因为包含进了pow()函数,这样我们就要给快速幂函数改个名字(比如fpow……),避免错误。

codeforces 894B - Ralph And His Magic Field - [数学题]的更多相关文章

  1. Codeforces 894B - Ralph And His Magic Field

    894B - Ralph And His Magic Field 思路: 当k为1时,如果n和m奇偶性不同,那么没有答案. 可以证明,在其他情况下有答案,且答案为2^(n-1)*(m-1),因为前n- ...

  2. codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence

    A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...

  3. Codeforces 894.B Ralph And His Magic Field

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  4. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  5. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  6. 【Codeforces Round #447 (Div. 2) B】Ralph And His Magic Field

    | [链接] 我是链接,点我呀:) [题意] 给你一个n*m矩阵,让你在里面填数字. 使得每一行的数字的乘积都为k; 且每一列的数字的乘积都为k; k只能为1或-1 [题解] 显然每个位置只能填1或- ...

  7. CF894B Ralph And His Magic Field

    题目链接:http://codeforces.com/contest/894/problem/B 题目大意: 往一个 \(n \times m\) 的网格中填数字 \((1 \le n,m \le 1 ...

  8. codeforces #369div2 B. Chris and Magic Square

    题目:在网格某一处填入一个正整数,使得网格每行,每列以及两条主对角线的和都相等 题目链接:http://codeforces.com/contest/711/problem/B 分析:题目不难,找到要 ...

  9. codeforces 711B B. Chris and Magic Square(水题)

    题目链接: B. Chris and Magic Square 题意: 问在那个空位子填哪个数可以使行列对角线的和相等,就先找一行或者一列算出那个数,再验证是否可行就好; AC代码: #include ...

随机推荐

  1. Log4net用法(App.config配置)

    配置文件 <configSections> <section name="log4net" type="log4net.Config.Log4NetCo ...

  2. [转]如何配置和使用Tomcat访问日志

    配置位置在log下的server.xml,(tomcat容器) <Engine defaultHost="localhost" name="Catalina&quo ...

  3. Netty权威指南之NIO通信模型

    NIO简介:与Socket和ServerSocket类相对应,NIO提供了SocketChannel和ServerSocketChannel两种不同的套接字通道实现,这两种新通道都支持阻塞和非阻塞两种 ...

  4. 【安全开发】java安全编码规范

    申明:本文非笔者原创,原文转载自:https://github.com/SecurityPaper/SecurityPaper-web/blob/master/_posts/2.SDL%E8%A7%8 ...

  5. PPT高手必须树立的十个理念

    08 2014年08月 [263职场技巧]PPT高手必须树立的十个理念 理念一:文字是用来瞟的,不是读的 我们时不时听到这样的言论:“PPT很简单,就是把Word里的文字复制.粘贴呗.”这其实是对PP ...

  6. [Command] lrzsz - 文件传输工具包

    lrzsz 是一个支持 XMODEM.YMODEM.ZMODEM 文件传输协议的 Unix 程序包.它是 Omen Technologies 公司所有的 rzsz 程序包的公开发行增强版,遵守 GNU ...

  7. React Native汇错归纳(持续更新中……)

    1.2017-10-25: 报错信息:“Cannot find entry file index.android.js in any of roots…..” 解决方法: 1.首先从虚拟机中找问题:看 ...

  8. codeforces水题100道 第四题 Codeforces Round #105 (Div. 2) A. Insomnia cure (math)

    题目链接:http://www.codeforces.com/problemset/problem/148/A题意:求1到d中有多少个数能被k,l,m,n中的至少一个数整出.C++代码: #inclu ...

  9. Web负载均衡与分布式架构

     参考帖子: Web负载均衡的几种实现方式 大型网站架构系列:负载均衡详解(上) DNS 原理入门 解决nginx负载均衡的session共享问题 什么是消息队列 Java应用架构的演化之路 Java ...

  10. Glide加载图片缓存库出现——You cannot start a load for a destroyed activity

    请记住一句话:不要再非主线程里面使用Glide加载图片,如果真的使用了,请把context参数换成getApplicationContext.