(Python)numpy的argmax用法
解释
还是从一维数组出发.看下面的例子.
import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))
4
argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=0))
[1,2,2,1]
为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是
a[0][j],
a[1][j],
a[2][j]
(j=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[1][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=1))
[1,0,2]
np.argmax(a, axis=1)的含义是
a[i][0],a[i][1],a[i][2],a[i][3]
(i=0,1,2)中最大值的索引.(每1行的最大索引)
从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)
再看三维的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=0))
[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.
从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=1))
[[1 2 0 1]
[1 2 2 1]]
np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k],a[i][2][k] (i=0,1,k=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).
再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.
(Python)numpy的argmax用法的更多相关文章
- Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...
- python numpy sum函数用法
numpy.sum numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] Sum of array element ...
- python numpy argsort函数用法
numpy.argsort numpy.argsort(a, axis=-1, kind='quicksort', order=None)[source] Returns the indices th ...
- Python NumPy学习总结
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...
- Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...
- python numpy库np.percentile用法说明
在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可…… a = range(1,101) #求取a数列第90%分位的数值 np.per ...
- Numpy的简单用法
Numpy的简单用法 import numpy as np 一.创建ndarray对象 列表转换成ndarray: >>> a = [1,2,3,4,5] >>> ...
- python numpy学习记录
numpy是一个python和矩阵相关的库,在机器学习中非常有用,记录下numpy的基本用法 numpy的数组类叫做ndarray也叫做数组,跟python标准库中的array.array不同,后者只 ...
- Python Numpy基础教程
Python Numpy基础教程 本文是一个关于Python numpy的基础学习教程,其中,Python版本为Python 3.x 什么是Numpy Numpy = Numerical + Pyth ...
随机推荐
- JVM 详解
概念 数据类型 Java 虚拟机中,数据类型可以分为两类:基本类型和引用类型.基本类型的变量保存原始值,即:他代表的值就是数值本身:而引用类型的变量保存引用值.“引用值”代表了某个对象的引用,而不是对 ...
- Spring Cloud Netflix项目进入维护模式
任何项目都有其生命周期,Spring Could Netflix也不例外,官宣已进入维护模式,如果在新项目开始考虑技术选型时要考虑到这点风险,并考虑绕道的可能性. 原创: itmuch IT牧场 这 ...
- 【转】Ubuntu添加PATH环境变量
原文网址:http://www.cnblogs.com/pang123hui/archive/2011/05/28/2309889.html 添加分两种: 一.临时性添加 ~$ echo $PATH ...
- 异常: java.security.InvalidKeyException: Illegal key size
今天在做接口测试的时候遇到个异常: java.security.InvalidKeyException: Illegal key size. SecretKeySpec secretKeySpec = ...
- linux 线程的同步 二 (互斥锁和条件变量)
互斥锁和条件变量 为了允许在线程或进程之间共享数据,同步时必须的,互斥锁和条件变量是同步的基本组成部分. 1.互斥锁 互斥锁是用来保护临界区资源,实际上保护的是临界区中被操纵的数据,互斥锁通常用于保护 ...
- java 中的好东西 jackson
转自: https://github.com/FasterXML/jackson 重要的是: jackson 支持 第三方数据类型 jsonobject jsonarray( json.org/jav ...
- ghost系统下,C#获取时间带星期几的解决办法
cmd regedit打开注册表,进入到[HKEY_USERS\.DEFAULT\Control Panel\International] ,然后1.将键 sDate 的值由 / 改为 - 2. ...
- 垃圾收集器之:G1收集器
G1垃圾收集器是一种工作在堆内不同分区上的并发收集器.分区既可以归属于老年代,也可以归属新生代,同一个代的分区不需要保持连续.为老年代设计分区的初衷是我们发现并发后台线程在回收老年代中没有引用的对象时 ...
- 软件-分布式:Kylin (apache开源分布式分析引擎软件)
ylbtech-软件-分布式:Kylin (apache开源分布式分析引擎软件) Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop之上的SQL查询接口及多维分析(OLAP)能力以 ...
- mysql导入导出数据中文乱码解决方法小结(1、navicat导入问题已解决,创建连接后修改连接属性,选择高级->将使用Mysql字符集复选框去掉,下拉框选择GBK->导入sql文件OK;2、phpmyadmin显示乱码的问题也解决,两步:1.将sql文件以utf8的字符集编码另存,2.将文件中sql语句中的字段字符集编码改成utf8,导入OK)
当向 MySQL 数据库插入一条带有中文的数据形如 insert into employee values(null,'张三','female','1995-10-08','2015-11-12',' ...