作者:桂。

时间:2018-04-24  22:04:52

链接:http://www.cnblogs.com/xingshansi/p/8934373.html


前言

本文为Jacobi并行拆解一文的补充,给出另一种矩阵运算的思路。

一、算法流程

  对于复数相关矩阵R,通过矩阵变换,在维度不变的情况下,转化为实数矩阵:

对于MUSIC算法,该思路可以降低Jacobi运算复杂度。额外的操作仅仅是少量的乘法操作,即耗费少量硬件资源换取更快速的处理时间。

直接复数转实数,需要将nxn的矩阵扩展为2n x 2n的矩阵,而直接转化的相关矩阵仍然为 n x n,降低了Jacobi的复杂度

  容易证明U*Un为新的特征向量,而U可与导向矢量a提前乘法处理,存储到Ram里。

  这里可以看出:(R + J*conj(R)*J)/2等价于中心对称线阵的前、后项空间平滑算法,而斜Hermitian矩阵的特征向量与转化的特征向量等价,因此可以得出特性:对于具备中心对称特性的线阵,复数->实数,既可以降低Jacobi复杂度,又具备了解相干信号的能力。

二、仿真验证

  未做实数化处理,code:

clc;clear all;close all
%Ref:Narrowband direction of arrival estimation for antenna arrays
doas=[-30 -5 40]*pi/180; %DOA's of signals in rad.
P=[1 1 1]; %Power of incoming signals
N=10; %Number of array elements
K=1024; %Number of data snapshots
d=0.5; %Distance between elements in wavelengths
noise_var=1; %Variance of noise
r=length(doas); %Total number of signals
% Steering vector matrix. Columns will contain the steering vectors
% of the r signals
A=exp(-i*2*pi*d*(0:N-1)'*sin([doas(:).']));
% Signal and noise generation
sig=round(rand(r,K))*2-1; % Generate random BPSK symbols for each of the
% r signals
noise=sqrt(noise_var/2)*(randn(N,K)+i*randn(N,K)); %Uncorrelated noise
X=A*diag(sqrt(P))*sig+noise; %Generate data matrix
R=X*X'/K; %Spatial covariance matrix
[Q ,D]= svd(R); %Compute eigendecomposition of covariance matrix
[D,I]=sort(diag(D),1,'descend'); %Find r largest eigenvalues
Q=Q(:,I);%Sort?the?eigenvectors?to?put?signal?eigenvectors?first
Qs=Q (:,1:r); %Get the signal eigenvectors
Qn=Q(:,r+1:N); %Get the noise eigenvectors
% MUSIC algorithm
%?Define?angles?at?which?MUSIC???spectrum????will?be?computed
angles=(-90:0.1:90);
%Compute steering vectors corresponding values in angles
a1=exp(-i*2*pi*d*(0:N-1)'*sin([angles(:).']*pi/180));
for k=1:length(angles)%Compute?MUSIC???spectrum??
music_spectrum(k)= 1/(a1(:,k)'*Qn*Qn'*a1(:,k));
end
figure(1)
plot(angles,abs(music_spectrum))
title('MUSIC Spectrum')
xlabel('Angle in degrees')

实数化处理,code:

clc;clear all;close all
%Ref:Narrowband direction of arrival estimation for antenna arrays
doas=[-30 -5 40]*pi/180; %DOA's of signals in rad.
P=[1 1 1]; %Power of incoming signals
N=10; %Number of array elements
K=1024; %Number of data snapshots
d=0.5; %Distance between elements in wavelengths
noise_var=1; %Variance of noise
r=length(doas); %Total number of signals
% Steering vector matrix. Columns will contain the steering vectors
% of the r signals
A=exp(-i*2*pi*d*(0:N-1)'*sin([doas(:).']));
% Signal and noise generation
sig=round(rand(r,K))*2-1; % Generate random BPSK symbols for each of the
% r signals
noise=sqrt(noise_var/2)*(randn(N,K)+i*randn(N,K)); %Uncorrelated noise
X=A*diag(sqrt(P))*sig+noise; %Generate data matrix
R=X*X'/K; %Spatial covariance matrix
%% Reconstruct
%实数
n = size(R);
I = eye(n/2);
J = fliplr(eye(n));
U = 1/sqrt(2)*[I fliplr(I);1j*fliplr(I) -1j*I];
R = 0.5*U*(R+J*conj(R)*J)*U';
% Reconstruct_end
[Q ,D]= svd(R); %Compute eigendecomposition of covariance matrix
[D,I]=sort(diag(D),1,'descend'); %Find r largest eigenvalues
Q=Q(:,I);%Sort?the?eigenvectors?to?put?signal?eigenvectors?first
Qs=Q (:,1:r); %Get the signal eigenvectors
Qn=Q(:,r+1:N); %Get the noise eigenvectors
% MUSIC algorithm
%?Define?angles?at?which?MUSIC???spectrum????will?be?computed
angles=(-90:0.1:90);
%Compute steering vectors corresponding values in angles
a1=exp(-i*2*pi*d*(0:N-1)'*sin([angles(:).']*pi/180));
for k=1:length(angles)%Compute?MUSIC???spectrum??
music_spectrum(k)= 1/(a1(:,k)'*U'*Qn*Qn'*U*a1(:,k));
end
figure(1)
plot(angles,abs(music_spectrum))
title('MUSIC Spectrum')
xlabel('Angle in degrees')

Jacobi并行拆解【补充】的更多相关文章

  1. Jacobi并行拆解

    作者:桂. 时间:2018-04-23  21:12:02 链接:http://www.cnblogs.com/xingshansi/p/8921815.html 前言 本文主要是复数矩阵分解的拆解思 ...

  2. 进程队列补充、socket实现服务器并发、线程完结

    目录 1.队列补充 2.关于python并发与并行的补充 3.TCP服务端实现并发 4.GIL全局解释器锁 什么是保证线程安全呢? GIL与Lock 5.验证多线程的作用 对结论的验证: 6.死锁现象 ...

  3. 深入理解Java虚拟机之JVM垃圾回收随笔

    1.对象已经死亡? 1.1引用计数法:给对象中添加一个引用计数器,每当有一个地方引用他时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不可能再被使用 的.但是它很难解决 ...

  4. 《OpenCL异构并行编程实战》补充笔记散点,第一至四章

    ▶ 总体印象:适合 OpenCL 入门的书,有丰富的代码和说明,例子较为简单.先把 OpenCL 代码的基本结构(平台 → 设备 → 上下文 → 命令队列 → 创建缓冲区 → 读写缓冲区 → 编译代码 ...

  5. Python基础补充(二) 多核CPU上python多线程并行的一个假象【转】

    在python上开启多个线程,由于GIL的存在,每个单独线程都会在竞争到GIL后才运行,这样就干预OS内部的进程(线程)调度,结果在多核CPU上: python的多线程实际是串行执行的,并不会同一时间 ...

  6. 《OpenCL异构并行编程实战》补充笔记散点,第五至十二章

    ▶ 第五章,OpenCL 的并发与执行模型 ● 内存对象与上下文相关而不是与设备相关.设备在不同设备之间的移动如下,如果 kernel 在第二个设备上运行,那么在第一个设备上产生的任何数据结果在第二个 ...

  7. OpenMP 《并行程序设计导论》的补充代码

    ▶ 使用 OpenMP 和队列数据结构,在各线程之间传递信息 ● 代码,使用 critical 子句和 atomic 指令来进行读写保护 // queue.h #ifndef _QUEUE_H_ #d ...

  8. Pthreads 《并行程序设计导论》的补充代码

    ▶ 关于单链表的访问,插入结点和删除结点操作,并且将其推广到多线程中去. ● 代码,通用的随机数生成 // my_rand.h #ifndef _MY_RAND_H_ #define _MY_RAND ...

  9. .Net并行编程(一)-TPL之数据并行

    前言 许多个人计算机和工作站都有多个CPU核心,可以同时执行多个线程.利用硬件的特性,使用并行化代码以在多个处理器之间分配工作. 应用场景 文件批量上传 并行上传单个文件.也可以把一个文件拆成几段分开 ...

随机推荐

  1. cpu内存访问速度,磁盘和网络速度,所有人都应该知道的数字

    google 工程师Jeff Dean 首先在他关于分布式系统的ppt文档列出来的,到处被引用的很多. 1纳秒等于10亿分之一秒,= 10 ^ -9 秒  ---------------------- ...

  2. Nginx+Tomcat+Memcached 实现集群部署时Session共享

    Nginx+Tomcat+Memcached 实现集群部署时Session共享 一.简介 我们系统经常要保存用户登录信息,有Cookie和Session机制,Cookie客户端保存用户信息,Sessi ...

  3. MySQL查看当前用户、存储引擎、日志

    #查看MySQL的当前用户 mysql> SELECT USER(); +----------------+ | USER() | +----------------+ | root@local ...

  4. JQuery EasyUI学习笔记

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6690888.html  简介与准备 jQuery EasyUI 是一个基于 jQuery 的框架,集成了各种用 ...

  5. Shell脚本学习之sed详解

    在编写shell脚本的过程中,我们经常需要使用sed流编辑器和awk对文本文件进行处理. 一.什么是sed? sed 是一种在线编辑器,它一次处理一行内容.sed是非交互式的编辑器.它不会修改文件,除 ...

  6. 三种分布式对象主流技术——COM、Java和COBRA

    既上一遍,看到还有一遍将关于 对象的, 分布式对象, 故摘抄入下: 目前国际上,分布式对象技术有三大流派——COBRA.COM/DCOM和Java.CORBA技术是最早出现的,1991年OMG颁布了C ...

  7. java struts2入门学习实例--用户注册

     一.用户注册示例 register.jsp <%@ page language="java" contentType="text/html; charset=UT ...

  8. C语言lseek()函数:移动文件的读写位置

    相关函数:dup, open, fseek 头文件:#include <sys/types.h>    #include <unistd.h> 定义函数:off_t lseek ...

  9. Android-- ArrayAdapter用法举例(转载)

    近期很多Android开发者来函表示对ArrayAdapter和BaseAdapter的区别不是很清楚,这里Android123简单说下他们的关系和用处,ArrayAdapter是从BaseAdapt ...

  10. 【JQuery】jQuery中的常用方法小结

    1.层级选择器     后代选择器     "父元素  后代元素" 比如:$("div p") 选取div元素下所有的p元素 子元素选择器   "父元 ...