POJ 1860 Bellman-Ford算法
转载链接:http://blog.csdn.net/lyy289065406/article/details/6645778
提示:关键在于反向利用Bellman-Ford算法
题目大意
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
题目分析:
一种货币就是图上的一个点
一个“兑换点”就是图上两种货币之间的一个兑换环,相当于“兑换方式”M的个数,是双边
唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
而A到B的权值为(V-Cab)*Rab
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化d(S)=V 而源点到其他店的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径
附个人代码:(POJ貌似是挂了。。。无限循环CE。。。。宝宝要哭了。。。。T_T)
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int n, m, fn; // 分别表示货币种数 、 转换点 、 源点 、 源点权值
double fv;
double dis[210];
struct Node
{
int u, v;
double r, c; // c 兑换费用 r 兑换率
}edge[210];
int tot = 0; // 边数 n 是点数
bool relax(int j)
{
double t = (dis[edge[j].u] - edge[j].c) * edge[j].r;
if (dis[edge[j].v] < t) // 与bellman 算法刚好相反。bellman算法用来找找负环 求最短路径
{ //这里用同样的思想找正环 求最长路径
dis[edge[j].v] = t;
return true;
}
return false;
}
bool bellman(int ori)
{
memset(dis, 0, sizeof(dis));
dis[ori] = fv;
bool flag;
for (int i=0; i<n; ++i) // 尝试n-1次(对每个点一次) 对每条边进行松弛。寻找最长边
{ // 若不存在负环则可以确定源点到 每个顶点的 最长距离
flag = false;
for (int j=0; j<tot; ++j)
{
if (relax(j)) flag = true;
//if (flag == false) return false;
}
if (dis[ori] > fv) return true;
if (flag == false) return false;
}
for (int i=0; i<tot; ++i)
{
if (relax(i)) return true;
}
return false;
}
int main()
{
while (~scanf("%d%d%d%lf", &n, &m, &fn, &fv))
{
tot = 0;
for (int i=0; i<m; ++i)
{
int a, b;
double rab, cab, rba, cba;
scanf("%d%d%f%f%f%f", &a, &b, &rab, &cab, &rba, &cba);
edge[tot].u = a;
edge[tot].v = b;
edge[tot].r = rab;
edge[tot++].c = cab;
edge[tot].u = b;
edge[tot].v = a;
edge[tot].r = rba;
edge[tot++].c = cba;
}
if (bellman(fn))
printf("YES\n");
else printf("NO\n");
}
return 0;
}
附标准代码:
#include<iostream>
using namespace std;
int n; //货币种数
int m; //兑换点数量
int s; //持有第s种货币
double v; //持有的s货币的本金
int all; //边总数
double dis[101]; //s到各点的权值
class exchange_points
{
public:
int a; //货币a
int b; //货币b
double r; //rate
double c; //手续费
}exc[202];
bool bellman(void)
{
memset(dis,0,sizeof(dis)); //这里与bellman的目的刚好相反。初始化为源点到各点距离无穷小
dis[s]=v; //即bellman本用于找负环,求最小路径,本题是利用同样的思想找正环,求最大路径
/*relax*/
bool flag;
for(int i=1;i<=n-1;i++)
{
flag=false;
for(int j=0;j<all;j++)
if(dis[exc[j].b] < (dis[exc[j].a] - exc[j].c) * exc[j].r) //寻找最长路径
{ //进行比较的是"某点到自身的权值"和"某点到另一点的权值"
dis[exc[j].b] = (dis[exc[j].a] - exc[j].c) * exc[j].r;
flag=true;
}
if(!flag)
break;
}
/*Search Positive Circle*/
for(int k=0;k<all;k++)
if(dis[exc[k].b] < (dis[exc[k].a] - exc[k].c) * exc[k].r) //正环能够无限松弛
return true;
return false;
}
int main(void)
{
int a,b;
double rab,cab,rba,cba; //临时变量
while(cin>>n>>m>>s>>v)
{
all=0; //注意初始化
for(int i=0;i<m;i++)
{
cin>>a>>b>>rab>>cab>>rba>>cba;
exc[all].a=a;
exc[all].b=b;
exc[all].r=rab;
exc[all++].c=cab;
exc[all].a=b;
exc[all].b=a;
exc[all].r=rba;
exc[all++].c=cba;
}
/*Bellman-form Algorithm*/
if(bellman())
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
POJ 1860 Bellman-Ford算法的更多相关文章
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj 1860 bellman 求正环
#include<stdio.h> #include<string.h> #include<queue>//只需判断是否有正环路径就可以了 using namesp ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other) T ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- POJ 3259 Wormholes SPFA算法题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- POJ 1860 Currency Exchange (Bellman-Ford)
题目链接:POJ 1860 Description Several currency exchange points are working in our city. Let us suppose t ...
随机推荐
- 20145101《Java程序设计》第一周学习总结
20145101 <Java程序设计>第1周学习总结 教材学习内容总结 开学的第一周,通过课上老师的介绍和课下阅读教材我简单的了解java的发展历程,了解了JVM.JRE.JDK分别是什么 ...
- POJ 2785 4 Values whose Sum is 0 (二分)题解
思路: 如果用朴素的方法算O(n^4)超时,这里用折半二分.把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数. 注意和有重复 #include<iost ...
- 关于ActiveMQ、RocketMQ、RabbitMQ、Kafka一些总结和区别
这是一篇分享文 转自:http://www.cnblogs.com/williamjie/p/9481780.html 尊重原作,谢谢 消息队列 为什么写这篇文章? 博主有两位朋友分别是小A和小B: ...
- url rewrite导致的500.19 0x8007000d
https://stackoverflow.com/questions/13532447/http-error-500-19-iis-7-5-error-0x8007000d It seems you ...
- 【Tomca安装与启动】tomcatLinux环境安装与启动
一.安装 1.下载tomcat安装包 2.解压安装包 3.配置环境变量 打开~/.bash_profile文件,输入一下两句话: export TOMCAT_HOME=/Users/enniu1/De ...
- 【第八章】 springboot + mybatis + 多数据源
在实际开发中,我们一个项目可能会用到多个数据库,通常一个数据库对应一个数据源. 代码结构: 简要原理: 1)DatabaseType列出所有的数据源的key---key 2)DatabaseConte ...
- 51nod 1284 2 3 5 7的倍数
从1到N 里 是2的倍数 有 N/2 个 然后大概看过这类的blog 所以运用容斥原理 直接计算 是 2 3 5 7 的个数都是多少 然后用N 减去 就是 不是2 3 5 7 的个数了 (离散好像也 ...
- 网络量化——Quantized Convolutional Neural Networks for Mobile Devices
论文地址:https://arxiv.org/abs/1512.06473 源码地址:https://github.com/jiaxiang-wu/quantized-cnn 1. 主要思想 这篇文章 ...
- JavaScript权威指南2.词法结构
字符集 1.用16位的Unicode字符集编写的,可以表示地球上通用的每一种书面语言.国际化 2.每个字符都是用两个字节表示的 3.大小写敏感:关键字.变量.函数名.标识符:HTML并不区分大小写 H ...
- 【jdk源码分析】ArrayList的size()==0和isEmpty()
先看结果 分析源码 [jdk源码解析]jdk8的ArrayList初始化长度为0 java的基本数据类型默认值 无参构造 size()方法 isEmpty()方法