Min Cost Path

 

Given a cost matrix cost[][] and a position (m, n) in cost[][], write a function that returns cost of minimum cost path to reach (m, n) from (0, 0). Each cell of the matrix represents a cost to traverse through that cell. Total cost of a path to reach (m, n) is sum of all the costs on that path (including both source and destination). You can only traverse down, right and diagonally lower cells from a given cell, i.e., from a given cell (i, j), cells (i+1, j), (i, j+1) and (i+1, j+1) can be traversed. You may assume that all costs are positive integers.

For example, in the following figure, what is the minimum cost path to (2, 2)?

The path with minimum cost is highlighted in the following figure. The path is (0, 0) –> (0, 1) –> (1, 2) –> (2, 2). The cost of the path is 8 (1 + 2 + 2 + 3).

http://www.geeksforgeeks.org/dynamic-programming-set-6-min-cost-path/

下面是递归法和动态规划法的C++程序:

int minCostPath(vector<vector<int>> &cost, int m, int n)
{
if (n < 0 || m < 0) return INT_MAX;
else if (m == 0 && n == 0) return cost[m][n];
else return cost[m][n] + min(minCostPath(cost, m-1, n-1),
min(minCostPath(cost, m-1, n), minCostPath(cost, m, n-1)));
} int minCostPathDP(vector<vector<int> > &cost)
{
int row = cost.size();
if (row < 1) return 0;
int col = cost[0].size(); vector<vector<int> > ta(2, vector<int>(col));
bool flag = false;
ta[!flag][0] = cost[0][0];
for (int i = 1; i < col; i++)
{
ta[!flag][i] = ta[!flag][i-1] + cost[0][i];
} for (int i = 1; i < row; i++)
{
ta[flag][0] = ta[!flag][0] + cost[i][0];
for (int j = 1; j < col; j++)
{
ta[flag][j] = min(min(ta[!flag][j],ta[flag][j-1]),
ta[!flag][j-1]) + cost[i][j];
}
flag = !flag;
}
return ta[!flag][col-1];
}

Geeks面试题:Min Cost Path的更多相关文章

  1. LeetCode算法题-Min Cost Climbing Stairs(Java实现)

    这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...

  2. [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  3. min cost max flow算法示例

    问题描述 给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同).但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案 ...

  4. Min Cost Climbing Stairs - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Min Cost Climbing Stairs - LeetCode 注意点 注意边界条件 解法 解法一:这道题也是一道dp题.dp[i]表示爬到第i层 ...

  5. Leetcode 746. Min Cost Climbing Stairs 最小成本爬楼梯 (动态规划)

    题目翻译 有一个楼梯,第i阶用cost[i](非负)表示成本.现在你需要支付这些成本,可以一次走两阶也可以走一阶. 问从地面或者第一阶出发,怎么走成本最小. 测试样例 Input: cost = [1 ...

  6. 746. Min Cost Climbing Stairs@python

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  7. LN : leetcode 746 Min Cost Climbing Stairs

    lc 746 Min Cost Climbing Stairs 746 Min Cost Climbing Stairs On a staircase, the i-th step has some ...

  8. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  9. 【Leetcode_easy】746. Min Cost Climbing Stairs

    problem 746. Min Cost Climbing Stairs 题意: solution1:动态规划: 定义一个一维的dp数组,其中dp[i]表示爬到第i层的最小cost,然后来想dp[i ...

随机推荐

  1. 解决Eclipse代码分析插件SonarLint在Console输出乱码问题

    在Eclipse安装目录下的eclipse.ini文件末尾加上一行   -Dfile.encoding=UTF-8   即可.

  2. C# 获取Image图片格式

    private void button1_Click_1(object sender, EventArgs e) { string path = Application.StartupPath; us ...

  3. 多目标线性规划求解方法及matlab实现

    转载: https://blog.csdn.net/wzl1997/article/details/79120323

  4. 通过NAT转发实现私网对外发布信息

    我们可以在防火墙的外部网卡上绑定多个合法IP地址,然后通过ip映射使发给其中某一个IP地址的包转发至内部某一用户的WWW服务器上,然后再将该内部WWW服务器响应包伪装成该合法IP发出的包. 具体的IP ...

  5. C# WORD操作实现代码(转载)

    在当前项目开发过程中,客户有根据数据库数据生成WORD文档的需求,在和同事沟通的过程中,找到了两个解决方案 1.先通过程序生成报表样式的HTML页面,然后修改HTML页面的后缀名为DOC. 2.定制W ...

  6. springboot使用@ControllerAdvice(二)之深入理解

    前言: 接口类项目开发时,为了便于后期查找问题,一般会拦截器或过滤器中记录每个接口请求的参数与响应值记录, 请求参数很容易从request中获取,但controller的返回值无法从response中 ...

  7. andoid-sdk 安装时出现 Stopping ADB server failed(code -1) 错

    出错原因: cmd在path路径找不到adb命令,是因为adb.exe文件存在于android-sdk安装目录platform-tools/子目录下,要将这个路径配置到环境变量里面. 解决方案: 按照 ...

  8. ARC简介以及工程中ARC与非ARC的混合(转)

    ARC与非ARC在一个项目中同时使用, 1,选择项目中的Targets,选中你所要操作的Target,2,选Build Phases,在其中Complie Sources中选择需要ARC的文件双击,并 ...

  9. 5 -- Hibernate的基本用法 --4 9 其他常用的配置属性

    Hibernate其他常用的配置属性: ⊙ hibernate.show_sql : 是否在控制台输出Hibernate持久化操作底层所使用的SQL语句.只能为true和false两个值. ⊙ hib ...

  10. office系列调节背景主题

    更改背景主题可以参考:https://jingyan.baidu.com/article/ff42efa9332adec19e220200.html 但是这种方法只是改变了整个软件外框架的背景颜色.以 ...