Min Cost Path

 

Given a cost matrix cost[][] and a position (m, n) in cost[][], write a function that returns cost of minimum cost path to reach (m, n) from (0, 0). Each cell of the matrix represents a cost to traverse through that cell. Total cost of a path to reach (m, n) is sum of all the costs on that path (including both source and destination). You can only traverse down, right and diagonally lower cells from a given cell, i.e., from a given cell (i, j), cells (i+1, j), (i, j+1) and (i+1, j+1) can be traversed. You may assume that all costs are positive integers.

For example, in the following figure, what is the minimum cost path to (2, 2)?

The path with minimum cost is highlighted in the following figure. The path is (0, 0) –> (0, 1) –> (1, 2) –> (2, 2). The cost of the path is 8 (1 + 2 + 2 + 3).

http://www.geeksforgeeks.org/dynamic-programming-set-6-min-cost-path/

下面是递归法和动态规划法的C++程序:

int minCostPath(vector<vector<int>> &cost, int m, int n)
{
if (n < 0 || m < 0) return INT_MAX;
else if (m == 0 && n == 0) return cost[m][n];
else return cost[m][n] + min(minCostPath(cost, m-1, n-1),
min(minCostPath(cost, m-1, n), minCostPath(cost, m, n-1)));
} int minCostPathDP(vector<vector<int> > &cost)
{
int row = cost.size();
if (row < 1) return 0;
int col = cost[0].size(); vector<vector<int> > ta(2, vector<int>(col));
bool flag = false;
ta[!flag][0] = cost[0][0];
for (int i = 1; i < col; i++)
{
ta[!flag][i] = ta[!flag][i-1] + cost[0][i];
} for (int i = 1; i < row; i++)
{
ta[flag][0] = ta[!flag][0] + cost[i][0];
for (int j = 1; j < col; j++)
{
ta[flag][j] = min(min(ta[!flag][j],ta[flag][j-1]),
ta[!flag][j-1]) + cost[i][j];
}
flag = !flag;
}
return ta[!flag][col-1];
}

Geeks面试题:Min Cost Path的更多相关文章

  1. LeetCode算法题-Min Cost Climbing Stairs(Java实现)

    这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...

  2. [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  3. min cost max flow算法示例

    问题描述 给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同).但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案 ...

  4. Min Cost Climbing Stairs - LeetCode

    目录 题目链接 注意点 解法 小结 题目链接 Min Cost Climbing Stairs - LeetCode 注意点 注意边界条件 解法 解法一:这道题也是一道dp题.dp[i]表示爬到第i层 ...

  5. Leetcode 746. Min Cost Climbing Stairs 最小成本爬楼梯 (动态规划)

    题目翻译 有一个楼梯,第i阶用cost[i](非负)表示成本.现在你需要支付这些成本,可以一次走两阶也可以走一阶. 问从地面或者第一阶出发,怎么走成本最小. 测试样例 Input: cost = [1 ...

  6. 746. Min Cost Climbing Stairs@python

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  7. LN : leetcode 746 Min Cost Climbing Stairs

    lc 746 Min Cost Climbing Stairs 746 Min Cost Climbing Stairs On a staircase, the i-th step has some ...

  8. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  9. 【Leetcode_easy】746. Min Cost Climbing Stairs

    problem 746. Min Cost Climbing Stairs 题意: solution1:动态规划: 定义一个一维的dp数组,其中dp[i]表示爬到第i层的最小cost,然后来想dp[i ...

随机推荐

  1. Json与bean的相互转换

    本文使用json-lib jar包实现Json与bean的相互转换 1.将字符串转为JSON 使用JSONObject.fromObject(str)方法即可将字符串转为JSON对象 使用JSONOb ...

  2. pyqt5加载网路图片,不本地下载。

    依赖组件: requests class webImg: pass if __name__ == '__main__': import sys from PyQt5.QtWidgets import ...

  3. 文本处理三剑客之 sed详解

    1.简介 sed是非交互式的编辑器,它不会修改文件,除非使用shell重定向来保存结果.默认情况下,所有的输出行都被打印到屏幕上. sed编辑器逐行处理文件(或输入),并将结果发送到屏幕.具体过程如下 ...

  4. PHP usort 使用用户自定义的比较函数对数组中的值进行排序

    From: http://www.php100.com/cover/php/2395.html usort (PHP 4, PHP 5) usort — 使用用户自定义的比较函数对数组中的值进行排序 ...

  5. Windows 环境搭建Redis集群(win 64位)

    转: http://blog.csdn.net/zsg88/article/details/73715947 参考:https://www.cnblogs.com/tommy-huang/p/6240 ...

  6. 软件设计模式之工厂模式(JAVA)

    什么是工厂模式? 工厂模式是我们最常用的实例化对象模式了,是用工厂方法代替new操作的一种模式.著名的Jive论坛 ,就大量使用了工厂模式,工厂模式在Java程序系统可以说是随处可见.因为工厂模式就相 ...

  7. storm学习之六-使用Maven 生成jar包多种方式

    Maven可以使用mvn package指令对项目进行打包,如果使用java -jar xxx.jar执行运行jar文件,会出现"no main manifest attribute, in ...

  8. [转]python的requests发送/上传多个文件

    1.需要的环境 Python2.X Requests 库 2.单字段发送单个文件 在requests中发送文件的接口只有一种,那就是使用requests.post的files参数, 请求形式如下:   ...

  9. jquery获取表单数据方法$.serializeArray()获取不到disabled的值

    $.serializeArray()获取不到disabled的值 经实验,$.serializeArray()获取不到disabled的值,如果想要让input元素变为不可用,可以把input设为re ...

  10. 代码记录——phase16,block36

    36*36 -2,-2扩展 代码有问题,有时能运行有时报错. HRESULT RotateZoom(PBYTE pbSrc,int iWidth,int iHeight,double dbRotate ...