from sklearn.ensemble import BaggingRegressor

Bagging通过引入随机化增大每个估计器之间的差异。

参数介绍:

    base_estimator:Object or None。None代表默认是DecisionTree,Object可以指定基估计器(base estimator)。

    n_estimators:int, optional (default=10) 。   要集成的基估计器的个数。

    max_samples: int or float, optional (default=1.0)。决定从x_train抽取去训练基估计器的样本数量。int 代表抽取数量,float代表抽取比例

    max_features : int or float, optional (default=1.0)。决定从x_train抽取去训练基估计器的特征数量。int 代表抽取数量,float代表抽取比例

    bootstrap : boolean, optional (default=True) 决定样本子集的抽样方式(有放回和不放回)

    bootstrap_features : boolean, optional (default=False)决定特征子集的抽样方式(有放回和不放回)

    oob_score : bool 决定是否使用包外估计(out of bag estimate)泛化误差

    warm_start : bool, optional (default=False) true代表

    n_jobs : int, optional (default=1) 

    random_state : int, RandomState instance or None, optional (default=None)。如果int,random_state是随机数生成器使用的种子; 如果RandomState的实例,random_state是随机数生成器; 如果None,则随机数生成器是由np.random使用的RandomState实例。

    verbose : int, optional (default=0) 

属性介绍:

    estimators_ : list of estimators。The collection of fitted sub-estimators.

    estimators_samples_ : list of arrays

    estimators_features_ : list of arrays

    oob_score_ : float,使用包外估计这个训练数据集的得分。

    oob_prediction_ : array of shape = [n_samples]。在训练集上用out-of-bag估计计算的预测。 如果n_estimator很小,则可能在抽样过程中数据点不会被忽略。 在这种情况下,oob_prediction_可能包含NaN。

还要解决三个问题

①他到底是什么,用于什么情况?

  BaggingRegressor就是一个Bagging的回归器组合。说到底还是用于集成多个回归器,所以还是会勇于回归预测的情况,集成一下解决过拟合的问题。

②他的优缺点?

  

③调参过程?

from sklearn.ensemble import BaggingClassifier

Bagging Classifier+Regressor的更多相关文章

  1. sklearn中各种分类器回归器都适用于什么样的数据呢?

    作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  2. scikit-learn:class and function reference(看看你究竟掌握了多少。。)

    http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is t ...

  3. 我的第一个 Kaggle 比赛学习 - Titanic

    背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再 ...

  4. AdaBoost Classifier和Regressor

    Adaboost原理传送门 AdaBoost在我看理论课程的时候,以分类为例子来讲解的,谁知道sklearn里面基本上都有classifier和regressor两种.这个倒是我没想到的!!! fro ...

  5. Keras(三)backend 兼容 Regressor 回归 Classifier 分类 原理及实例

    backend 兼容 backend,即基于什么来做运算 Keras 可以基于两个Backend,一个是 Theano,一个是 Tensorflow 查看当前backend import keras ...

  6. 集成学习---bagging and boosting

    作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升 ...

  7. 模式识别与机器学习—bagging与boosting

    声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...

  8. [机器学习]集成学习--bagging、boosting、stacking

    集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...

  9. 集成学习算法汇总----Boosting和Bagging(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

随机推荐

  1. Sencha Touch 实战开发培训 视频教程 第二期 第二节

    2014.4.9晚上8:00分开课. 本节课耗时接近1个半小时,需要一点耐心来观看. 本期培训一共八节,前两节免费,后面的课程需要付费才可以观看. 本节内容: 了解Container: 了解card布 ...

  2. sencha touch list + carousel scrollable(与其他控件共用滚动条)

    有些时候我们需要实现这种效果 上边是一张图片或者一个跑马灯控件,这个布局实现起来比较容易 但是如何让他们共用一个滚动条,来实现以下效果就比较麻烦了. 在官方论坛查找资料得知,可以用以下写法实现: /* ...

  3. CF 1100E Andrew and Taxi(二分答案)

    E. Andrew and Taxi time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Sass::SyntaxError related to active_admin/mixins

    in active_admin.css.sass, change: @import "active_admin/mixins"; @import "active_admi ...

  5. Centos7.0 配置docker 镜像加速

    在Docker Hub官网上注册帐号,即可下载使用仓库里的全部的docker镜像.而因为网络原因,国内的开发者没办法流畅的下载镜像,经常会出现下载中断的错误.解决方法就是使用国内的容器Hub加速服务, ...

  6. 【咸鱼教程】EUI多图片滑动组件ScrollView

    先看看实际效果 实现原理1.  ScrollView继承eui.Scroll2.  监听eui.Sroll的CHANGE_START和CHANGE_END事件,      根据鼠标滑动距离,来改变视口 ...

  7. python nose测试框架全面介绍七--日志相关

    引: 之前使用nose框架时,一直使用--logging-config的log文件来生成日志,具体的log配置可见之前python nose测试框架全面介绍四. 但使用一段时间后,发出一个问题,生成的 ...

  8. python实现简单购物车系统(练习)

    #!Anaconda/anaconda/python #coding: utf-8 #列表练习,实现简单购物车系统 product_lists = [('iphone',5000), ('comput ...

  9. rs.getMetadata

    元数据(MetaData),即定义数据的数据.打个比方,就好像我们要想搜索一首歌(歌本身是数据),而我们可以通过歌名,作者,专辑等信息来搜索,那么这些歌名,作者,专辑等等就是这首歌的元数据.因此数据库 ...

  10. Linux查看及设置系统字符集

    查看正在使用的字符集 查看可以设置的字符集 locale -a 修改字符集 export LANG=zh_CN.gbk