题目链接:点击传送

E. Propagating tree
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Iahub likes trees very much. Recently he discovered an interesting tree named propagating tree. The tree consists of n nodes numbered from 1 to n, each node i having an initial value ai. The root of the tree is node 1.

This tree has a special property: when a value val is added to a value of node i, the value -val is added to values of all the children of node i. Note that when you add value -val to a child of node i, you also add -(-val) to all children of the child of node i and so on. Look an example explanation to understand better how it works.

This tree supports two types of queries:

  • "1 x val" — val is added to the value of node x;
  • "2 x" — print the current value of node x.

In order to help Iahub understand the tree better, you must answer m queries of the preceding type.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 200000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000). Each of the next n–1 lines contains two integers vi and ui (1 ≤ vi, ui ≤ n), meaning that there is an edge between nodes vi and ui.

Each of the next m lines contains a query in the format described above. It is guaranteed that the following constraints hold for all queries: 1 ≤ x ≤ n, 1 ≤ val ≤ 1000.

Output

For each query of type two (print the value of node x) you must print the answer to the query on a separate line. The queries must be answered in the order given in the input.

Examples
input
5 5
1 2 1 1 2
1 2
1 3
2 4
2 5
1 2 3
1 1 2
2 1
2 2
2 4
output
3
3
0
Note

The values of the nodes are [1, 2, 1, 1, 2] at the beginning.

Then value 3 is added to node 2. It propagates and value -3 is added to it's sons, node 4 and node 5. Then it cannot propagate any more. So the values of the nodes are [1, 5, 1,  - 2,  - 1].

Then value 2 is added to node 1. It propagates and value -2 is added to it's sons, node 2 and node 3. From node 2 it propagates again, adding value 2 to it's sons, node 4 and node 5. Node 3 has no sons, so it cannot propagate from there. The values of the nodes are [3, 3,  - 1, 0, 1].

You can see all the definitions about the tree at the following link: http://en.wikipedia.org/wiki/Tree_(graph_theory)

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=4e6+,inf=;
const ll INF=1e18+,mod=1e9+;
/// 数组大小
struct is
{
int v,next;
}edge[N<<];
int head[N],edg,a[N];
void init()
{
memset(head,-,sizeof(head));
edg=;
}
void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
}
int in[N],out[N],tot,deep[N];
void dfs(int u,int fa,int dep)
{
in[u]=++tot;
deep[u]=dep;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
if(v==fa)continue;
dfs(v,u,dep+);
}
out[u]=tot;
}
/// 线段树
struct SGT
{
int TL[N<<],TR[N<<],ans;
void build(int l,int r,int pos)
{
TL[pos]=TR[pos]=;
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
}
void update(int L,int R,int c,int dep,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
if(dep&)
{
TL[pos]+=c;
TR[pos]-=c;
}
else
{
TL[pos]-=c;
TR[pos]+=c;
}
return;
}
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,dep,l,mid,pos<<);
if(R>mid)
update(L,R,c,dep,mid+,r,pos<<|);
}
void query(int p,int dep,int l,int r,int pos)
{
if(dep&)
ans+=TL[pos];
else
ans+=TR[pos];
if(l==r)return;
int mid=(l+r)>>;
if(p<=mid)
query(p,dep,l,mid,pos<<);
else
query(p,dep,mid+,r,pos<<|);
}
};
SGT tree;
int main()
{
init();
int n,q;
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs(,-,);
tree.build(,n,);
while(q--)
{
int t;
scanf("%d",&t);
if(t==)
{
int x,c;
scanf("%d%d",&x,&c);
tree.update(in[x],out[x],c,deep[x],,n,);
}
else
{
int x;
scanf("%d",&x);
tree.ans=;
tree.query(in[x],deep[x],,n,);
printf("%d\n",tree.ans+a[x]);
}
/*for(int i=1;i<=n;i++)
{
tree.ans=0;
tree.query(in[i],deep[i],1,n,1);
printf("%d ",tree.ans+a[i]);
}
printf("\n");*/
}
return ;
}
E. Propagating tree
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Iahub likes trees very much. Recently he discovered an interesting tree named propagating tree. The tree consists of n nodes numbered from 1 to n, each node i having an initial value ai. The root of the tree is node 1.

This tree has a special property: when a value val is added to a value of node i, the value -val is added to values of all the children of node i. Note that when you add value -val to a child of node i, you also add -(-val) to all children of the child of node i and so on. Look an example explanation to understand better how it works.

This tree supports two types of queries:

  • "1 x val" — val is added to the value of node x;
  • "2 x" — print the current value of node x.

In order to help Iahub understand the tree better, you must answer m queries of the preceding type.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 200000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000). Each of the next n–1 lines contains two integers vi and ui (1 ≤ vi, ui ≤ n), meaning that there is an edge between nodes vi and ui.

Each of the next m lines contains a query in the format described above. It is guaranteed that the following constraints hold for all queries: 1 ≤ x ≤ n, 1 ≤ val ≤ 1000.

Output

For each query of type two (print the value of node x) you must print the answer to the query on a separate line. The queries must be answered in the order given in the input.

Examples
input
5 5
1 2 1 1 2
1 2
1 3
2 4
2 5
1 2 3
1 1 2
2 1
2 2
2 4
output
3
3
0
Note

The values of the nodes are [1, 2, 1, 1, 2] at the beginning.

Then value 3 is added to node 2. It propagates and value -3 is added to it's sons, node 4 and node 5. Then it cannot propagate any more. So the values of the nodes are [1, 5, 1,  - 2,  - 1].

Then value 2 is added to node 1. It propagates and value -2 is added to it's sons, node 2 and node 3. From node 2 it propagates again, adding value 2 to it's sons, node 4 and node 5. Node 3 has no sons, so it cannot propagate from there. The values of the nodes are [3, 3,  - 1, 0, 1].

You can see all the definitions about the tree at the following link: http://en.wikipedia.org/wiki/Tree_(graph_theory)

Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树的更多相关文章

  1. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  2. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  3. Codeforces Round #200 (Div. 1)D. Water Tree dfs序

    D. Water Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/343/problem/ ...

  4. 343D/Codeforces Round #200 (Div. 1) D. Water Tree dfs序+数据结构

    D. Water Tree   Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each ...

  5. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  6. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  7. Codeforces Round #271 (Div. 2) F. Ant colony (RMQ or 线段树)

    题目链接:http://codeforces.com/contest/474/problem/F 题意简而言之就是问你区间l到r之间有多少个数能整除区间内除了这个数的其他的数,然后区间长度减去数的个数 ...

  8. Codeforces Round #332 (Div. 2) C. Day at the Beach 线段树

    C. Day at the Beach Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599/p ...

  9. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

随机推荐

  1. SQL中常见语句

    SQL中常见语句笔记: --替换字段中的回车符和换行符 ) ), '') --删除表命令 DROP TABLE [dbo].[MGoods_Test] --删除表中数据命令 DELETE FROM [ ...

  2. 2.keras实现-->深度学习用于文本和序列

    1.将文本数据预处理为有用的数据表示 将文本分割成单词(token),并将每一个单词转换为一个向量 将文本分割成单字符(token),并将每一个字符转换为一个向量 提取单词或字符的n-gram(tok ...

  3. 基于androidstudio3.0的build文件配置问题

    最近,在研究APP自动化相关的东西,在搭建环境的时候,遇到的坑以及最后解决的方法,不过目前很多东西了解得还不是很细,暂时先简单的记录一下一.build配置文件 主要分为两种: 1.工程下的build配 ...

  4. Map<String, String>循环遍历的方法

    Map<String, String>循环遍历的方法 Map<String, String>循环遍历的方法 Map<String, String>循环遍历的方法 下 ...

  5. android开发中遇到的一些问题

    buildToolsVersion 设置buildtool版本 今天遇到一个奇怪问题instant not supported 原来是设置显示offline...这个很无语,adb devices又能 ...

  6. div 在css中透明度怎么调?

    可以用这个属性:opacity: 0.95;opacity为属性,0.95为值(其中值的范围在0~1之间) 参考:https://zhidao.baidu.com/question/689118188 ...

  7. php hash算法

    任意长度的输入, 固定长度的输出 ,该输出就是hash值,这种转换就是一种压缩映射,也就是hash值的空间远远小于输入的空间, 不同的输入可能散列成相同的输出,而不能从hash值来唯一的确定输入值. ...

  8. 172. Factorial Trailing Zeroes(阶乘中0的个数 数学题)

    Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...

  9. Learning to Rank算法介绍:RankSVM 和 IR SVM

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

  10. 新版.Net开发必备十大工具(转)

    Snippet Compiler Snippet Compiler是一个基于 Windows 的小型应用程序,你可以通过它来编写.编译和运行代码.如果你具有较小的代码段,并且你不想创建完整的 Visu ...