14.3-ELK重难点总结和整体优化配置
本文收录在Linux运维企业架构实战系列
做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~
一、elk 实用知识点总结
1、编码转换问题(主要就是中文乱码)
(1)input 中的codec => plain 转码
codec => plain {
charset => "GB2312"
}
将GB2312 的文本编码,转为UTF-8 的编码
(2)也可以在filebeat中实现编码的转换(推荐)
filebeat.prospectors:
- input_type: log
paths:
- c:\Users\Administrator\Desktop\performanceTrace.txt
encoding: GB2312
2、删除多余日志中的多余行
(1)logstash filter 中drop 删除
if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") { #用正则需删除的多余行
drop {}
}
(2)日志示例
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
3、grok 处理多种日志不同的行
(1)日志示例:
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
(2)在logstash filter中grok 分别处理3行
match => {
"message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}"
match => {
"message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*"
}
match => {
"message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*"
}
... 等多行
4、日志多行合并处理—multiline插件(重点)
(1)示例:
① 日志
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
② logstash grok 对合并后多行的处理(合并多行后续都一样,如下)
filter {
grok {
match => {
"message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End"
}
}
}
(2)在filebeat中使用multiline 插件(推荐)
① 介绍multiline
pattern:正则匹配从哪行合并
negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并
match:after/before(需自己理解)
after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理
before:匹配到pattern 部分前合并(推荐)
② 5.5版本之后(before为例)
filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
fields:
type: zidonghualog
multiline.pattern: '.*\"WaitInterval\":.*--\ End'
multiline.negate: true
multiline.match: before
③ 5.5版本之前(after为例)
filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
input_type: log
multiline:
pattern: '^20.*'
negate: true
match: after
(3)在logstash input中使用multiline 插件(没有filebeat 时推荐)
① 介绍multiline
pattern:正则匹配从哪行合并
negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并
what:previous/next(需自己理解)
previous:相当于filebeat 的after
next:相当于filebeat 的before
② 用法
input {
file {
path => ["/root/logs/log2"]
start_position => "beginning"
codec => multiline {
pattern => "^20.*"
negate => true
what => "previous"
}
}
}
(4)在logstash filter中使用multiline 插件(不推荐)
(a)不推荐的原因:
① filter设置multiline后,pipline worker会自动将为1
② 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:
/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline
(b)示例:
filter {
multiline {
pattern => "^20.*"
negate => true
what => "previous"
}
}
5、logstash filter 中的date使用
(1) 日志示例
2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
(2) date 使用
date {
match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]
remove_field => "InsertTime"
}
注:
match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]
匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区
也可以写为:match => ["timestamp","ISO8601"](推荐)
(3)date 介绍
就是将匹配日志中时间的key 替换为@timestamp 的时间,因为@timestamp 的时间是日志送到logstash 的时间,并不是日志中真正的时间。
6、对多类日志分类处理(重点)
① 在filebeat 的配置中添加type 分类
filebeat:
prospectors:
-
paths:
#- /mnt/data/WebApiDebugLog.txt*
- /mnt/data_total/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_total
-
paths:
- /mnt/data_request/WebApiDebugLog.txt*
#- /mnt/data/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_request
-
paths:
- /mnt/data_report/WebApiDebugLog.txt*
#- /mnt/data/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_report
② 在logstash filter中使用if,可进行对不同类进行不同处理
filter {
if [fields][type] == "WebApiDebugLog_request" { #对request 类日志
if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") { #删除report 行
drop {}
}
grok {
match => {"... ..."}
}
}
③ 在logstash output中使用if
if [fields][type] == "WebApiDebugLog_total" {
elasticsearch {
hosts => ["6.6.6.6:9200"]
index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"
document_type => "WebApiDebugLog_total_logs"
}
二、对elk 整体性能的优化
1、性能分析
(1)服务器硬件Linux:1cpu 4GRAM
假设每条日志250 Byte
(2)分析
① logstash-Linux:1cpu 4GRAM
每秒500条日志
去掉ruby每秒660条日志
去掉grok后每秒1000条数据
② filebeat-Linux:1cpu 4GRAM
每秒2500-3500条数据
每天每台机器可处理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,约64G
③ 瓶颈在logstash 从redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);
④ logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。
2、关于收集日志的选择:logstash/filter
(1)没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的,区别在于:
① logstash由于集成了众多插件,如grok,ruby,所以相比beat是重量级的;
② logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;
③ logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;
④ AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;
⑤ filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。
(2)总结
logstash/filter 总之各有千秋,但是,我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash 输出给els。
3、logstash的优化相关配置
(1)可以优化的参数,可根据自己的硬件进行优化配置
① pipeline 线程数,官方建议是等于CPU内核数
默认配置 ---> pipeline.workers: 2
可优化为 ---> pipeline.workers: CPU内核数(或几倍cpu内核数)
② 实际output 时的线程数
默认配置 ---> pipeline.output.workers: 1
可优化为 ---> pipeline.output.workers: 不超过pipeline 线程数
③ 每次发送的事件数
默认配置 ---> pipeline.batch.size: 125
可优化为 ---> pipeline.batch.size: 1000
④ 发送延时
默认配置 ---> pipeline.batch.delay: 5
可优化为 ---> pipeline.batch.size: 10
(2)总结
通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。
默认每个输出在一个pipeline worker线程上活动,可以在输出output 中设置workers设置,不要将该值设置大于pipeline worker数。
还可以设置输出的batch_size数,例如ES输出与batch size一致。
filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input 中设置multiline,不要在filter中设置multiline。
(3)Logstash中的JVM配置文件
Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:
-Xms256m #最小使用内存
-Xmx1g #最大使用内存
4、引入Redis 的相关问题
(1)filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;
(2)Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;
(3)redis 做elk 缓冲队列的优化:
① bind 0.0.0.0 #不要监听本地端口
② requirepass ilinux.io #加密码,为了安全运行
③ 只做队列,没必要持久存储,把所有持久化功能关掉:快照(RDB文件)和追加式文件(AOF文件),性能更好
save "" 禁用快照
appendonly no 关闭RDB
④ 把内存的淘汰策略关掉,把内存空间最大
maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制
5、elasticsearch 节点优化配置
(1)服务器硬件配置,OS 参数
(a) /etc/sysctl.conf 配置
vim /etc/sysctl.conf
① vm.swappiness = 1 #ES 推荐将此参数设置为 1,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会很可能会造成 OOM
② net.core.somaxconn = 65535 #定义了每个端口最大的监听队列的长度
③ vm.max_map_count= 262144 #限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM
④ fs.file-max = 518144 #设置 Linux 内核分配的文件句柄的最大数量
[root@elasticsearch]# sysctl -p 生效一下
(b)limits.conf 配置
vim /etc/security/limits.conf
elasticsearch soft nofile 65535
elasticsearch hard nofile 65535
elasticsearch soft memlock unlimited
elasticsearch hard memlock unlimited
(c)为了使以上参数永久生效,还要设置两个地方
vim /etc/pam.d/common-session-noninteractive
vim /etc/pam.d/common-session
添加如下属性:
session required pam_limits.so
可能需重启后生效
(2)elasticsearch 中的JVM配置文件
-Xms2g
-Xmx2g
① 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。
② Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。
③ 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。
④ 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存
(3)elasticsearch 配置文件优化参数
① vim elasticsearch.yml
bootstrap.memory_lock: true #锁住内存,不使用swap
#缓存、线程等优化如下
bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: 40%
indices.cache.filter.size: 30%
indices.cache.filter.terms.size: 1024mb
threadpool:
search:
type: cached
size: 100
queue_size: 2000
② 设置环境变量
vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g #Heap Size不超过物理内存的一半,且小于32G
(4)集群的优化(我未使用集群)
① ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;
② 集群会自动选举一个master,当master宕机后重新选举;
③ 为防止"脑裂",集群中个数最好为奇数个
④ 为有效管理节点,可关闭广播 discovery.zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]
6、性能的检查
(1)检查输入和输出的性能
Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。
(2)检查系统参数
① CPU
注意CPU是否过载。在Linux/Unix系统中可以使用top -H查看进程参数以及总计。
如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。
② Memory
注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。
检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。
③ I/O 监控磁盘I/O检查磁盘饱和度
使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。
当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。
在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O
④ 监控网络I/O
当使用大量网络操作的input、output时,会导致网络饱和。
在Linux中可使用dstat或iftop监控网络情况。
(3)检查JVM heap
heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。
一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。
你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap
转自https://www.cnblogs.com/along21/
14.3-ELK重难点总结和整体优化配置的更多相关文章
- ELK重难点总结和整体优化配置
本文收录在Linux运维企业架构实战系列 做了几周的测试,踩了无数的坑,总结一下,全是干货,给大家分享~ 一.elk 实用知识点总结 1.编码转换问题(主要就是中文乱码) (1)input 中的cod ...
- Collection集合重难点梳理,增强for注意事项和三种遍历的应用场景,栈和队列特点,数组和链表特点,ArrayList源码解析, LinkedList-源码解析
重难点梳理 使用到的新单词: 1.collection[kəˈlekʃn] 聚集 2.empty[ˈempti] 空的 3.clear[klɪə(r)] 清除 4.iterator 迭代器 学习目标: ...
- 李洪强漫谈iOS开发[C语言-008]- C语言重难点
C语言学习的重难点 写程序的三个境界: 照抄的境界,翻译的境界,创新的境界 1 伪代码: 描述C语言的编程范式 范式: 规范的一种表示 对于C的范式学会的话,C, C++ Java 都会了 2 ...
- English--音标重难点
English|音标重难点 在拥有了,音标的元音与辅音的基础之后,需要对于这些音标进行加以区分,毕竟方言对于口型的影响非常的大. 前言 目前所有的文章思想格式都是:知识+情感. 知识:对于所有的知识点 ...
- 这是一份非常适合收藏的Android进阶/面试重难点整理
写在前面 记得我大二时“不务正业”地自学Android并跟了老师做项目,到大三开始在目前的公司实习,至今毕业已有几年多,学习Android已经6.7年多了!但总感觉知识点很零散,并且不够深入,遇到瓶颈 ...
- 《十天学会 PHP》的重难点
记录一下我在学习<十天学会 PHP>(第六版)的过程中的遇到的重难点,该课程是学习制作一个简单的留言板. 准备工作 XAMPP(Apache + MySQL + PHP + PERL) 是 ...
- html和css的重难点知识
目录 html总难点总结: 1. 块级标签与内联标签的区别 1.1 块级标签: 1.2 内联标签: 2. 选择器 2.1 定义 2.2 选择器的分类 2.1 选择器的分类 3. css中margin, ...
- 老猿Python重难点知识博文汇总
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 除了相关教程外,老猿在学习过程中还写了大量的学习随笔,内容比较杂,文章内容也参差不齐,为了方便,老猿 ...
- 项目实战14.1—ELK 企业内部日志分析系统
本文收录在Linux运维企业架构实战系列 一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSear ...
随机推荐
- Collections.copy
List<String> names = Arrays.asList(new String[nameList.size()]); Collections.copy(names, nameL ...
- java监听器原理理解与实现
监听器模型涉及以下三个对象,模型图如下: (1)事件:用户对组件的一个操作,称之为一个事件(2)事件源:发生事件的组件就是事件源(3)事件监听器(处理器):监听并负责处理事件的方法 执行顺序如下: 1 ...
- spark_20180328
// 2.1 条件表达式val x = 2val s = if (x > 0) 1 else -1if (x > 0) "positive" else -1// 返回值 ...
- APP测试常见功能测试点汇总
本文总结了一些APP功能测试中经常遇见测试点,仅供参考,是好早以前看哪位前辈总结的,一直在使用,所以也稍微的修改了下放到自己的博客中,以备日后温习.1.安装和卸载安装和卸载是任何一款APP中都属于最基 ...
- C#读取Oracle Spatial的sdo_geometry
oracle的sdo_geometry中内置get_wkt和get_wkb两个方法. 以数据库表geoms为例,此表中有id和geometry两列 try { OracleConnection con ...
- Windows下搭建QT环境
必须软件 qt-windows-opensource-5.1.1-msvc2010-x86-offline qt-vs-addin-1.2.2-opensource支持vs2008.2010.2012 ...
- 剑指Offer——数组中出现次数超过一半的数字——一题多解
看题目: 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...
- TTL-USB
CH340/ CH341T.CP2102.PL2303 .FT232: FT232:性能好,但价格贵:PL2303台湾的听说很多仿制的,CH340/341T/341A:国产的性能比PL2303好,并且 ...
- UVA 5986 - Wizarding Duel 超级脑洞题
给出n个人,每个人两两比赛一场,一共有C(n,2)场比赛,现在给出一个榜,问其是否合法.不合法的话,就改成合法,输出最小需要改的变化. 分数一定是C(n,2)的了, 不和法的情况,比如0,0,2,是不 ...
- 《Head First 设计模式》之装饰者模式——饮料加工
装饰者模式(Decorator) ——动态地将责任附加到对象上.若要扩展功能,装饰者提供了比继承更有弹性的替代方案. 特点:建立拥有共同超类的装饰者与被装饰者来实现功能的动态扩展 原则:对扩展开放,对 ...