LOJ#515. 「LibreOJ β Round #2」贪心只能过样例(bitset)
题目描述
一共有 nnn个数,第 iii 个数 xix_ixi 可以取 [ai,bi][a_i , b_i][ai,bi] 中任意值。
设 S=∑xi2S = \sum{{x_i}^2}S=∑xi2,求 SSS 种类数。
输入格式
第一行一个数 nnn。
然后 nnn 行,每行两个数表示 ai,bia_i,b_iai,bi。
输出格式
输出一行一个数表示答案。
样例
样例输入
5
1 2
2 3
3 4
4 5
5 6
样例输出
26
数据范围与提示
1≤n,ai,bi≤1001 \le n , a_i , b_i \le 1001≤n,ai,bi≤100
臭名昭著的巧合
考场上只想到了暴力,完全没想到bitset优化qwq。
考虑到$\sum_1^{100*100} * 100 = 1e6$
然后开个bitset每次暴力合并就行了
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<bitset>
#define rg register
using namespace std;
const int MAXN = 1e6 + , mod = ;
inline int read() {
char c = getchar();int x = ,f = ;
while(c < '' || c > ''){if(c == '-')f = -;c = getchar();}
while(c >= '' && c <= ''){x = x * + c - '',c = getchar();}
return x * f;
}
int N;
bitset<MAXN> pre, nxt;
int main() {
N = read();N--;
int l = read(), r = read();
for(rg int i = l; i <= r; i++) pre[i * i] = ;
for(rg int i = ; i <= N; i++) {
int l = read(), r = read();
nxt.reset();
for(rg int k = l; k <= r; k++)
nxt |= pre << (k * k);
pre = nxt;
}
printf("%d", nxt.count());
return ;
}
LOJ#515. 「LibreOJ β Round #2」贪心只能过样例(bitset)的更多相关文章
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- LibreOJ #515. 「LibreOJ β Round #2」贪心只能过样例
题目描述 一共有 nnn个数,第 iii 个数 xix_ixi 可以取 [ai,bi][a_i , b_i][ai,bi] 中任意值.设 S=∑xi2S = \sum{{x_i}^2 ...
- loj515 「LibreOJ β Round #2」贪心只能过样例[bitset+bool背包]
由于bitset极其不熟练且在实际题目中想不起来运用它来优化,于是练了几道题. 这题是一个分组的bool背包,每组必须选一个,暴力的话是$O(n^5)$. 如果dp数组不要一维滚动的话,有两种枚举方法 ...
- Loj515 「LibreOJ β Round #2」贪心只能过样例 - Bitset,Dp
bitset的基本应用了 类似可行性背包的dp考虑 复杂度O(nmL/64) #include <bits/stdc++.h> using namespace std; bitset &l ...
- loj515 「LibreOJ β Round #2」贪心只能过样例
传送门:https://loj.ac/problem/515 [题解] 容易发现S最大到1000000. 于是我们有一个$O(n^2*S)$的dp做法. 容易发现可以被bitset优化. 于是复杂度就 ...
- LibreOJ β Round #2」贪心只能过样例
题目友链:https://loj.ac/problem/515 话说这题蛮简单,bitset暴力直接过. 话不多说,上代码! #include <bits/stdc++.h> using ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
随机推荐
- Murano Weekly Meeting 2016.05.24
Meeting time: 2016.May.24 1:00~2:00 Chairperson: Kirill Zaitsev, from Mirantis Meeting summary: 1.A ...
- jemeter的简单使用
建立测试计划 启动jmeter后,jmeter会自动生成一个空的测试计划,用户可以基于该测试计划建立自己的测试计划. 添加线程组 一个性能测试请求负载是基于一个线程组完成的.一个测试计划必须有一个线程 ...
- RSA算法、SSL协议学习笔记
最近学习计算机网络,涉及到SSL协议,我想起了去年密码学课程讲过的非对称加密RSA算法,结合阮老师的博客,写写学习笔记,这里再回忆一下. RSA算法 RSA算法是一种非对称密码算法,所谓非对称,就是指 ...
- for循环笔记
JS获取元素方法——ById和ByTagName方法的区别 1.通过id获取,前面就只能是document,不能是其他的,但是ByTagName前面可以是document,也可以跟一个别的元素 #li ...
- HDU 2255 ——奔小康赚大钱——————【KM算法裸题】
奔小康赚大钱 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- Log4.Net日志记录解析
http://www.cnblogs.com/neekerss/archive/2011/01/04/1925171.html
- JNI:在线程或信号处理函数中访问自定义类
在写一个Tomcat应用,类需要被信号处理函数回调,可是在单独的程序中测试没用问题: void OnSingalHandler(int sig) { ... JNIEnv* env=NULL; if ...
- 1.C#中的注释符
1.软件行业的道德规范 (1).程序员在日常写代码的过程中,一定要养成注释的好习惯,方便后面对理解和使用. (2).在给标识符命名的时候一定要规范,有理有据的,名字不能瞎写. 2.注释 注释符的作用: ...
- SublimeText插件cssrem : px转换为rem
步骤: 下载插件: https://github.com/flashlizi/cssrem 安装插件: 打开:Sublime Text 点击: Preferences 选择: Browse Packa ...
- Linux目录配置——Linux目录配置标准:FHS
事实上,FHS针对目录树架构仅定义出三层目录下应该放置哪些数据,分别是下面三个目录: 一./(根目录):与开机系统有关 根目录(/)所在分区应该越小越好,且应用程序所安装的软件最好不要与根目录放在同一 ...