Minimum Cut

Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 895    Accepted Submission(s): 387

Problem Description
Given a simple unweighted graph G (an undirected graph containing no loops nor multiple edges) with n nodes and m edges. Let T be a spanning tree of G.
We say that a cut in G respects T if it cuts just one edges of T.

Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph G respecting the given spanning tree T.

 
Input
The input contains several test cases.
The first line of the input is a single integer t (1≤t≤5) which is the number of test cases.
Then t test cases follow.

Each test case contains several lines.
The first line contains two integers n (2≤n≤20000) and m (n−1≤m≤200000).
The following n−1 lines describe the spanning tree T and each of them contains two integers u and v corresponding to an edge.
Next m−n+1 lines describe the undirected graph G and each of them contains two integers u and v corresponding to an edge which is not in the spanning tree T.

 
Output
For each test case, you should output the minimum cut of graph G respecting the given spanning tree T.
 
Sample Input
1
4 5
1 2
2 3
3 4
1 3
1 4
 
Sample Output
Case #1: 2
 
Source
 
 
题目大意:给你一棵树,然后给加上m-n+1条边。问你必须切掉树上的一条边,使得图不连通最少需要切多少条边。
 
解题思路:树链剖分。用树链剖分将树上的边都编上编号。每次加边的时候就在u--v之间加权值1。最后找到边权最小的即为答案。这里用差分前缀和来处理区间。
 
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5;
struct Edge{
int v,w,next;
}edges[maxn*5];
int head[maxn];
int fa[maxn],dep[maxn],siz[maxn],son[maxn];
int top[maxn],w[maxn];
int c[maxn];
int tot,totw;
const int INF=0x3f3f3f3f;
void init(){
tot=0;
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
}
void addedge(int _u,int _v){
edges[tot].v=_v;
edges[tot].next=head[_u];
head[_u]=tot++;
edges[tot].v=_u;
edges[tot].next=head[_v];
head[_v]=tot++;
}
void dfs1(int u,int _fa,int _dep ){ //得到dep数组、fa数组、siz数组、son数组
dep[u] = _dep;
fa[u] = _fa;
siz[u] = 1;
for(int i=head[u]; i!=-1; i=edges[i].next){
Edge &e = edges[i];
if(e.v != _fa){
dfs1(e.v,u, _dep+1);
siz[u]+=siz[ e.v ];
if(son[u]==-1 || siz[son[u]] <siz[e.v]){
son[u] = e.v;
}
}
}
}
void dfs2(int u,int _top){ //得到top数组、w数组
top[u]=_top;
w[u]=totw++;
if(son[u]!=-1){
dfs2(son[u],_top);
for(int i=head[u]; i != -1; i = edges[i].next){
Edge &e = edges[i];
if(e.v != fa[u]&&e.v!=son[u]){
dfs2(e.v,e.v);
}
}
}
}
void update(int u,int v,int val){ //修改u---v路径上的权值
int f1=top[u],f2=top[v]; //找到u,v所在重链的链头
while(f1!=f2){ //处理不在同一条重链上的情况
if(dep[f1]<dep[f2]){
swap(f1,f2);
swap(u,v);
}
c[w[f1]] +=val; //这里用的是差分前缀和的方法实现
c[w[u]+1]-=val;
u=fa[f1];
f1=top[u];
}
if(dep[u]>dep[v]){ //让u处于靠近根的位置
swap(u,v);
}
c[w[son[u]]]+=val; //处理在同一条重链上的情况
c[w[v]+1]-=val;
}
int main(){
int t,n,m,cnt=0;
scanf("%d",&t);
while(t--){
init();
scanf("%d%d",&n,&m);
int a,b;
for(int i=1;i<=n-1;i++){
scanf("%d%d",&a,&b);
addedge(a,b);
}
dfs1(1,-1,1);
totw=1;
dfs2(1,1);
memset(c,0,sizeof(c));
for(int i=1;i<=m-n+1;i++){
scanf("%d%d",&a,&b);
update(a,b,1);
}
for(int i=1;i<=n;i++){
c[i]+=c[i-1];
}
int ans=INF;
for(int i=1;i<=n;i++){
if(c[i]!=0&&c[i]){
ans=min(ans,c[i]);
}
}
printf("Case #%d: %d\n",++cnt,ans+1);
}
return 0;
}

  

Diversion

Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Others)
Submit Status

Problem Description

      The kingdom of Farland has n cities connected by m bidirectional roads. Some of the roads are paved with stone, and others are just country roads. The capital of the kingdom is the city number 1. The roads are designed in such a way that it is possible to get from any city to any other using only roads paved with stone, and the number of stone roads is minimal possible. The country roads were designed in such a way that if any stone road is blocked or destroyed it is still possible to get from any city to any other by roads.
​      Let us denote the number of stone roads needed to get from city u to city v as s(u, v). The roads were created long ago and follow the strange rule: if two cities u and v are connected by a road (no matter,stone or country), then either s(1, u) + s(u, v) = s(1, v ) or s(1, v ) + s(v, u) = s(1, u).
​      The king of Edgeland is planning to attack Farland. He is planning to start his operation by destroying some roads. Calculations show that the resources he has are enough to destroy one stone road and one country road. The king would like to destroy such roads that after it there were at least two cities in Farland not connected by roads any more.
​      Now he asks his minister of defense to count the number of ways he can organize the diversion. But the minister can only attack or defend, he cannot count. Help him!

Input

      The first line of the input file contains n and m — the number of cities and roads respectively (3 ≤ n ≤ 20 000, m ≤ 100 000). The following m lines describe roads, each line contains three integer numbers — the numbers of cities connected by the corresponding road, and 1 for a stone road or 0 for a country road. No two cities are connected by more than one road, no road connects a city to itself.

Output

Output one integer number — the number of ways to organize the diversion.

Sample Input

6 7
1 2 1
2 3 1
1 4 0
3 4 1
4 5 1
3 6 0
5 6 1

Sample Output

4

解释:这个题目跟上面那个基本一样,只是最后让求的结果略有不同。这个题目问只同时删掉树上一条边,和新加的边能让图不连通的方式有多少种。那么只需要统计最后边权为1的边有多少条即可。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5;
struct Edge{
int v,w,next;
}edges[maxn*5];
struct Country{
int x,y;
}countrys[maxn];
int head[maxn];
int fa[maxn],dep[maxn],siz[maxn],son[maxn];
int top[maxn],w[maxn];
int c[maxn];
int tot,totw;
const int INF=0x3f3f3f3f;
void init(){
tot=0;
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
}
void addedge(int _u,int _v){
edges[tot].v=_v;
edges[tot].next=head[_u];
head[_u]=tot++;
edges[tot].v=_u;
edges[tot].next=head[_v];
head[_v]=tot++;
}
void dfs1(int u,int _fa,int _dep ){ //得到dep数组、fa数组、siz数组、son数组
dep[u] = _dep;
fa[u] = _fa;
siz[u] = 1;
for(int i=head[u]; i!=-1; i=edges[i].next){
Edge &e = edges[i];
if(e.v != _fa){
dfs1(e.v,u, _dep+1);
siz[u]+=siz[ e.v ];
if(son[u]==-1 || siz[son[u]] <siz[e.v]){ //得到u的重儿子
son[u] = e.v;
}
}
}
}
//top[i]表示i节点所在重链的链头节点、w[i]表示i节点的父边在线段中的位置
void dfs2(int u,int _top){ //得到top数组、w数组
top[u]=_top;
w[u]=totw++;
if(son[u]!=-1){
dfs2(son[u],_top);
for(int i=head[u]; i != -1; i = edges[i].next){
Edge &e = edges[i];
if(e.v != fa[u]&&e.v!=son[u]){
dfs2(e.v,e.v);
}
}
}
}
void update(int u,int v,int val){ //修改u---v路径上的权值
int f1=top[u],f2=top[v]; //找到u,v所在重链的链头
while(f1!=f2){ //处理不在同一条重链上的情况
if(dep[f1]<dep[f2]){
swap(f1,f2);
swap(u,v);
}
c[w[f1]] +=val; //这里用的是差分前缀和的方法实现
c[w[u]+1]-=val;
u=fa[f1];
f1=top[u];
}
if(dep[u]>dep[v]){ //让u处于靠近根的位置
swap(u,v);
}
c[w[son[u]]]+=val; //处理在同一条重链上的情况
c[w[v]+1]-=val;
}
int main(){
int n,m,cnt=0,mm;
while( scanf("%d%d",&n,&m)!=EOF){
mm=0;
init();
int a,b,cc;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&a,&b,&cc);
if(cc==1)
addedge(a,b);
else countrys[++mm].x=a,countrys[mm].y=b;
}
dfs1(1,-1,1);
totw=1;
dfs2(1,1);
memset(c,0,sizeof(c));
for(int i=1;i<=mm;i++){
a=countrys[i].x;
b=countrys[i].y;
update(a,b,1);
}
for(int i=1;i<=n;i++){
c[i]+=c[i-1];
}
int ans=0;
for(int i=2;i<=n;i++){
if(c[i]==1){
ans++;
}
}
printf("%d\n",ans);
}
return 0;
}

  


HDU 5452——Minimum Cut——————【树链剖分+差分前缀和】ACdream 1429——Diversion——————【树链剖分】的更多相关文章

  1. Hdu 5452 Minimum Cut (2015 ACM/ICPC Asia Regional Shenyang Online) dfs + LCA

    题目链接: Hdu 5452 Minimum Cut 题目描述: 有一棵生成树,有n个点,给出m-n+1条边,截断一条生成树上的边后,再截断至少多少条边才能使图不连通, 问截断总边数? 解题思路: 因 ...

  2. hdu 5452 Minimum Cut 树形dp

    Minimum Cut Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...

  3. HDU 5452 Minimum Cut(LCA)

    http://acm.hdu.edu.cn/showproblem.php?pid=5452 题意: 有一个连通的图G,先给出图中的一棵生成树,然后接着给出图中剩余的边,现在要删除最少的边使得G不连通 ...

  4. HDU 5452 Minimum Cut

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5452题目大意: 给你一个图G,图中包含一颗生成树.要求只能删除生成树内的一条边,使得图不联通.问最小的删除 ...

  5. HDU 5452 Minimum Cut (Spaning Tree)

    生成树的上的一个非根结点对应一条生成树上的边,然后这个结点的子树上连出去的边就对应去掉这条边的割, 然后就可以对树外的边求LCA,在LCA上标记,利用这个信息可以算出有多少条边在子树上,以及有多少条边 ...

  6. 洛谷 P3258 [JLOI2014]松鼠的新家 树链剖分+差分前缀和优化

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 说明 思路 AC代码 优化 优化后AC代码 总结 题面 题目链接 P3258 [JLOI2 ...

  7. hdu 1394 Minimum Inversion Number(这道题改日我要用线段树再做一次哟~)

    Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of ...

  8. ACdream 1424 Diversion( 树链剖分 )

    Diversion Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Submit St ...

  9. AcWing243一个简单的整数问题2(树状数组+差分+前缀和规律)

    题目地址:https://www.acwing.com/problem/content/244/ 题目描述: 给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l r d ...

随机推荐

  1. lvs-nat搭建httpd

    拓扑图: #172.16.252.10 [root@~ localhost]#route -n Kernel IP routing table Destination Gateway Genmask ...

  2. 使用py 和flask 实现的服务器系统目录浏览,日志文件实时显示到网页的功能

    看日志希望带有彩色,希望从浏览器上看到,不用连到机器上看. 浏览系统的文件夹,scan + 系统文件夹的层级名字当做url路由,可以深层次看到机器上任何层级的文件夹,实现系统文件夹浏览下载. 如果是点 ...

  3. USB插拔检测程序

    一.手动添加ON_WM_DEVICECHANGE()消息 二.添加头文件#include <Dbt.h> 三.定义设备的GUID static const GUID GUID_DEVINT ...

  4. Unusual Sequences

    题意: 求解合为 y 的总体 gcd 为 x 的正整数非空序列个数. 解法: 特判一下后,原问题等价于合为 s = y/x 的整体gcd为1的正整数序列个数. 1.$ans = \sum_{\sum{ ...

  5. 《精通Spring4.X企业应用开发实战》读后感第五章(FactoryBean)

  6. 第五课5、ROS客户端2

    1.简单的主题(topic)发布者和主题订阅者: 编写主题发布者节点需要: a.初始化ROS系统: b.广播消息:在foo主题上发布Foo_type_msg类型的消息 c.指定频率发布消息到foo主题 ...

  7. JavaScript学习系列5 ---ES6中的var, let 和const

    我们都知道JavaScript中的var,在本系列的 JavaScript学习系列2一JavaScript中的变量作用域 中,我们详细阐述了var声明的变量的作用域 文章中提到,JavaScript中 ...

  8. 理解setTimeout和setInterval

    setTimeout和setInterval,这两个js函数都是用来定时执行.setTimeout执行一次,setInterval执行多次. 问题出现在今天,使用setInterval是,设置执行速度 ...

  9. C#的递归函数

    我的理解:函数内部把自己当另一个函数来调用 其实还是调用的他自己 递归函数必须有结束条件,否则就是死循环

  10. sqlserver2012——触发器

    触发器:是一个修改指定数据时执行的存储过程. 创建触发器 Create Trigger trigger_name ON {table|view} { } 例子: insert触发器: create T ...