BZOJ 1832

写起来很放松的题。

首先发现三个点在树上一共只有$3$种形态,大概长这样:

这种情况下显然走到三个点的$lca$最优。

这种情况下走到中间那个点最优。

这种情况下走到$2$最优。

有趣的事情来了:我们发现树上的三个点,会有三个$lca$,而当两个$lca$相同时,另外一个$lca$就成了最优解。

考虑一下怎么计算路程,只要分别算算三个图就会发现最后路程的式子也是统一的,(假设点为$x, y, z$)就是$dep_x + dep_y + dep_z - dep_{lca(x, y)} - dep_{lca(y, z)} - dep_{lca(x, z)}$。

时间复杂度$O(nlogn)$。

感觉倍增挺卡的,但是$2 * n = 1e6$完全不敢$rmq$啊$233$,链剖应该是比较优秀的做法吧。

Code:

#include <cstdio>
#include <cstring>
using namespace std; const int N = 5e5 + ;
const int Lg = ; int n, qn, tot = , head[N], dep[N], fa[N][Lg]; struct Edge {
int to, nxt;
} e[N << ]; inline void add(int from, int to) {
e[++tot].to = to;
e[tot].nxt = head[from];
head[from] = tot;
} inline void swap(int &x, int &y) {
int t = x; x = y; y = t;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} void dfs(int x, int fat, int depth) {
fa[x][] = fat, dep[x] = depth;
for(int i = ; i <= ; i++)
fa[x][i] = fa[fa[x][i - ]][i - ];
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(y == fat) continue;
dfs(y, x, depth + );
}
} inline int getLca(int x, int y) {
if(dep[x] < dep[y]) swap(x, y);
for(int i = ; i >= ; i--)
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y) return x;
for(int i = ; i >= ; i--)
if(fa[x][i] != fa[y][i])
x = fa[x][i], y = fa[y][i];
return fa[x][];
} int main() {
read(n), read(qn);
for(int x, y, i = ; i < n; i++) {
read(x), read(y);
add(x, y), add(y, x);
}
dfs(, , ); for(int x, y, z; qn--; ) {
read(x), read(y), read(z);
int xy = getLca(x, y), yz = getLca(y, z), xz = getLca(x, z), res;
if(xy == yz) res = xz;
else if(xy == xz) res = yz;
else if(yz == xz) res = xy;
printf("%d %d\n", res, dep[x] + dep[y] + dep[z] - dep[xy] - dep[yz] - dep[xz]);
} return ;
}

Luogu 4281 [AHOI2008]紧急集合 / 聚会的更多相关文章

  1. LUOGU P4281 [AHOI2008]紧急集合 / 聚会 (lca)

    传送门 解题思路 可以通过手玩或打表发现,其实要选的点一定是他们三个两两配对后其中一对的$lca$上,那么就直接算出来所有的$lca$,比较大小就行了. #include<iostream> ...

  2. P4281 [AHOI2008]紧急集合 / 聚会

    P4281 [AHOI2008]紧急集合 / 聚会 lca 题意:求3个点的lca,以及3个点与lca的距离之和. 性质:设点q1,q2,q3 两点之间的lca t1=lca(q1,q2) t2=lc ...

  3. [AHOI2008]紧急集合 / 聚会(LCA)

    [AHOI2008]紧急集合 / 聚会 题目描述 欢乐岛上有个非常好玩的游戏,叫做"紧急集合".在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通 ...

  4. [AHOI2008]紧急集合 / 聚会

    题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...

  5. LCA【p4281】[AHOI2008]紧急集合 / 聚会

    Description 欢乐岛上有个非常好玩的游戏,叫做"紧急集合".在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等 ...

  6. BZOJ 1832、1787 洛谷 4281 [AHOI2008]紧急集合

    [题解] 题目要求找到一个集合点,使3个给定的点到这个集合点的距离和最小,输出集合点的编号以及距离. 设三个点为A,B,C:那么我们可以得到Dis=dep[A]+dep[B]+dep[C]-dep[L ...

  7. P4281 [AHOI2008]紧急集合 / 聚会[LCA]

    解析 蒟蒻用的办法比较蠢,不如上面的各位大佬,直接化成一个式子了,我还是分类讨论做的. 下面正文. 猜想:最优集合点一定是三点任意两对点对应的路径的交点. 不妨这样想,如果任意两个人经过同一条路径,那 ...

  8. 「AHOI2008」「LuoguP4281」紧急集合 / 聚会(LCA

    题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...

  9. 【bzoj1787】&【bzoj1832】[Ahoi2008]Meet 紧急集合 & 聚会

    bzoj1787就是bzoj1832 bzoj1832 空间和时间少了一些... 求三个结点到一个结点距离之和最小的结点以及距离和 求出两两lca,其中有两个相同,答案则为另一个 感觉就是一大暴力.. ...

随机推荐

  1. Hibernate Validator验证框架中@NotEmpty、@NotBlank、@NotNull 的区别

    Hibernate Validator验证框架中@NotEmpty.@NotBlank.@NotNull的主要使用情况 @NotEmpty  用在集合类上面 @NotBlank   用在String上 ...

  2. hdoj-1013-Digital Roots(九余数定理)

    题目链接 #include <iostream> using namespace std; int main() { string a; int b; ") { b = ; ;i ...

  3. git教程5-查看关系图与no fast forward融合

    1.每一个提交相当于一个版本,版本都有版本号与之对应.通常通过git commit -m "name"为每次提交命名. 2.融合:即将次分支的最后一个版本添加到主分支上.当融合冲突 ...

  4. http请求 详解

  5. 基于Python语言使用RabbitMQ消息队列(五)

    Topics 在前面教程中我们改进了日志系统,相比较于使用fanout类型交易所只能傻瓜一样地广播,我们用direct获得了选择性接收日志的能力. 虽然使用direct类型交易所改进了我们的系统,但它 ...

  6. stack容器

    一.stack特性 stack是一种先进后出(first in last out,FILO)的数据结构,它只有一个出口,stack只允许在栈顶新增元素,移除元素,获得顶端元素,但是除了顶端之外,其他地 ...

  7. mysql之 Innobackupex全备恢复(原理、演示)

    一.  Innobackupex恢复原理    After creating a backup, the data is not ready to be restored. There might b ...

  8. 我的ubuntu新系统自动装软件脚本

    装一些常用软件 配一下环境变量 #!/bin/bash #download g++sudo apt-get install g++ -y#download codeblockssudo apt-get ...

  9. hl7 v2.X 版本中RSP_K23消息的构造

    RSP_K23消息有MSH, MSA, ERR, QAK, QPD, PID几个segment,其中ERR,PID为可选. 1. 当MSA有err时,ERR段填充出错的详细信息. 2. 当MSA为AA ...

  10. flask之基础概念

    [应用]一个 Flask 应用是一个 Flask 类的实例.可以在一个被称为应用工厂的函数内部创建 Flask实例.所有应用相关的配置.注册和其他设置都会在函数内部完成,然后返回这个应用.__init ...