(计数器)NOIP模拟赛(神奇的数位DP题。。)
没有原题传送门。。
手打原题QAQ
【问题描述】
一本书的页数为N,页码从1开始编起,请你求出全部页码中,用了多少个0,1,2,…,9。其中—个页码不含多余的0,如N=1234时第5页不是0005,只是5。
【输入】
一个正整数N(N≤109),表示总的页码。
【输出】
共十行:第k行为数字k-1的个数。
这道题是一道很有意思的DP题。
我们先来看一看这道题目
就是求1~n这么多个数中有多少个X数字。
然后我们来看一看一个例子:
在1~10这10个数中,每个数字(0~9)都在个位数中出现了1次。
在1~100这100个数中,每个数字(0~9)都在十位数中出现了10次。
在1~1000这1000个数中,每个数字(0~9)都在百位数中出现了100次。
以此类推。
所以我们得出了规律
在1~10^n中,数字x在第n-1位中出现了10^n-1次
如求2516数字5出现的次数
首先在2511~2516中,数字5在个位数出现1次;
在1~2510中,数字5在个位数中出现251次
251+1=252;
在1~2500中,数字5在十位数中出现25*10=250次
在1~2000中,数字5在百位数出现了2*100=200次
但是没完!
在2500~2516这么多数中,数字5在百位数还出现了16+1=17次
因为千位数字为2,小于5,所以5不会出现在千位
所以数字5出现的总次数就是252+250+200+17=719次
所以对于任何一个数字X,计算法则如下
计算X在右数第i位出现的次数
则为:
a=X*10^(i-1);
若num[i]>X return a+10^(i-1)即开头全部都为X数字的
若num[i]<X return a;
若num[i]==x return a+num%(10^i)+1;
但是对于任何一个数,0不可能为首位。
所以在计算0只能计算到第n-1位(假设num的位数为n)
然后判断一下就可以搞出来啦!
#include<iostream>
#include<cstdio>
using namespace std;
int qs,n,l;
long long num[];
long long tt[];
long long ans[];
int main(){
freopen("count.in","r",stdin);
freopen("count.out","w",stdout);
scanf("%d",&n);
qs=n;
while(qs){
l++;
num[l]=qs%;
qs/=;
}
tt[]=;
for(int i=;i<=;i++)
tt[i]=tt[i-]*;
qs=n;
for(int i=l;i>=;i--)
{
for(int j=;j<=;j++)
ans[j]+=tt[i-]*num[i]*(i-);
for(int j=;j<num[i];j++)
ans[j]+=tt[i];
ans[num[i]]+=qs%tt[i]+;
}
for(int i=;i<=l;i++)
ans[]-=tt[i];
for(int i=;i<=;i++)
printf("%lld\n",ans[i]);
fclose(stdin);
fclose(stdout);
return ;
}
(计数器)NOIP模拟赛(神奇的数位DP题。。)的更多相关文章
- 2018.08.19 NOIP模拟 number(类数位dp)
Number 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 如果一个数能够表示成两两不同的 3 的幂次的和,就说这个数是好的. 比如 13 是好的,因为 13 = 9 + 3 + ...
- 【NOIP模拟赛】超级树 DP
这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...
- 2018.11.07 NOIP模拟 异或(数位dp)
传送门 对于每个二进制位单独考虑贡献. 然后对于两种情况分别统计. 对于第二种要用类似数位dpdpdp的方法来计算贡献. 代码
- 2019.6.1 模拟赛——[ 费用流 ][ 数位DP ][ 计算几何 ]
第一题:http://codeforces.com/contest/1061/problem/E 把点集分成不相交的,然后跑费用流即可.然而错了一个点. #include<cstdio> ...
- [noip模拟赛]某种数列问题<dp>
某种数列问题 (jx.cpp/c/pas) 1000MS 256MB 众所周知,chenzeyu97有无数的妹子(阿掉!>_<),而且他还有很多恶趣味的问题,继上次纠结于一排妹子的排法以 ...
- NOIp模拟赛 巨神兵(状压DP 容斥)
\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...
- 模拟赛毒瘤状压DP题:Kronican
Kronican 内存限制:32 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: cqbzgm 题目描述 Mislav有N个无限体积的杯子,每一个杯子中都 ...
- Nescafe #29 NOIP模拟赛
Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...
- contesthunter暑假NOIP模拟赛第一场题解
contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...
随机推荐
- C++基础 匿名对象
以下几种情况又会匿名对象 (1)对象构造 与 匿名对象 Test t1 = Test(); 这时,Test()会构造匿名对象,并且是调用无参构造函数,然后 t1 将匿名对象扶正. (2)对象赋值 与 ...
- Android 使用Retrofit2.0+OkHttp3.0实现缓存处理+Cookie持久化第三方库
1.Retrofit+OkHttp的缓存机制 1.1.第一点 在响应请求之后在 data/data/<包名>/cache 下建立一个response 文件夹,保存缓存数据. 1.2.第二点 ...
- PHP.30-TP框架商城应用实例-后台6-商品会员价格删除-外键,级联操作
商品会员价格删除 需求:当删除一件商品时,这件商品对应的会员价格也应该从会员价格表{price,level_id,goods_id}中删除掉. 有两种删除方法 1.在钩子函数_before_delet ...
- Spring---配置文件概述
概述 Spring 的配置文件是用于指导 Spring 工厂进行Bean的生产.依赖关系注入及 Bean 实例分发的“图纸”,它是一个或多个标准的XML文档,J2EE 程序员必须学会并灵活应用这份“图 ...
- Win10安装bash慢的解决方案
电脑的Win10系统经过最近一年大量软件的装装删删,感觉已经有问题了,而且也存在大量无法清理的垃圾,占用着宝贵的SSD空间... 重新做系统的想法已经有一段时间了,正好赶上Win10的大更新 Crea ...
- 剑指Offer - 九度1512 - 用两个栈实现队列
剑指Offer - 九度1512 - 用两个栈实现队列2013-11-29 21:23 题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作.队列中的元素为int类型. 输入: 每个输入 ...
- 架构师速成6.7-设计开发思路-uml 分类: 架构师速成 2015-07-29 18:25 157人阅读 评论(0) 收藏
uml是什么东西?统一建模语言,一门语言,是用来进行软件设计的一门语言. 其实一门语言的诞生并不伟大,让大多数人都使用才足够伟大.uml就是一门伟大的语言,因为目前软件设计的唯一语言就是它. UML其 ...
- linux下给开启端口
首先在这里要推荐一篇博文 http://blog.csdn.net/zht666/article/details/17505789 这篇文章写的很详细,里面包含了操作端口一些命令,我们操作端口其实就是 ...
- appium-在页面点击一下处理(一般处理提示蒙层)
在写用例的时候,经常会发现某些第一次进去的页面会有一个蒙层提示.我们只有处理掉这个蒙层,才能继续我们的用例: 这边我们使用的是TouchAction的tap方法 TouchAction action ...
- sql 删除重复的类型并且时间相同的项
delete RemoteDetection WHERE REMOTEDETECTIONID IN ( select ID from ( select MIN(REMOTEDETECTIONID) I ...