【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
【BZOJ4004】[JLOI2015]装备购买
Description
Input
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
HINT
题解:又是贪心+高斯消元。。。排序就行了。
不过这题求的不是异或意义下的线性基,所以我们可以转化成模意义下的线性基,方法差不多(就是容易错啊)。
听说double也能过。。。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,m,ans,tot;
struct item
{
ll v[510];
int cost;
}s[510];
int vis[510];
bool cmp(item a,item b)
{
return a.cost<b.cost;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
int main()
{
n=rd(),m=rd();
int i,j,k,l;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) s[i].v[j]=rd();
for(i=1;i<=n;i++) s[i].cost=rd();
sort(s+1,s+n+1,cmp);
ll t;
for(i=1;i<=m;i++)
{
for(k=0,j=1;j<=n;j++) if(!vis[j]&&s[j].v[i])
{
k=j,vis[j]=1,ans+=s[j].cost;
break;
}
if(!k) continue;
tot++;
t=pm(s[k].v[i],mod-2);
for(j=i;j<=m;j++) s[k].v[j]=s[k].v[j]*t%mod;
for(j=1;j<=n;j++) if(j!=k&&s[j].v[i])
{
t=s[j].v[i];
for(l=1;l<=m;l++) s[j].v[l]=(s[j].v[l]-t*s[k].v[l]%mod+mod)%mod;
}
}
printf("%d %d",tot,ans);
return 0;
}
【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元的更多相关文章
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
- BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]
一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...
- AcWing 209. 装备购买 (高斯消元线性空间)打卡
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...
- 【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...
- [BZOJ4004][JLOI2015]装备购买(贪心+线性基)
求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...
- 线性空间和异或空间(线性基)bzoj4004贪心+高斯消元优秀模板
线性空间:是由一组基底构成的所有可以组成的向量空间 对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩 并且这i个主元线性无关 /* 每个向量有权值,求最小权极大线性无关 ...
- 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)
bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...
随机推荐
- 网易云音乐PC客户端加密API逆向解析
1.前言 网上已经有大量的web端接口解析的方法了,但是对客户端的接口解析基本上找不到什么资料,本文主要分析网易云音乐PC客户端的API接口交互方式. 通过内部的代理设置,使用fiddler作为代理工 ...
- Mysql_SQL_常用知识点&实践
1.Mysql中类似于nvl()函数的ifnull()函数 ) FROM Table 2.添加某个字段(指定字段column的位置) ----------添加字段zoneId ) NOT NULL A ...
- [Angular] ngClass conditional
Using ngClass for conditional styling, here is the usage from the docs: /** * @ngModule CommonModule ...
- Protractor(angular定制的e2e)的简易入门
这周项目终于上了e2e的测试,之前一直都没有测试的概念. 感谢我的领导和同志引入这样的理念和思想. 多的不说. 具体的环境搭建可以参考 http://jackhu.top/article/5607fa ...
- notepad++ 在每一行最后加上逗号
1.全选缩进对齐 2.替换功能,入下全部替换 3.在入下替换 4.结果 完成!
- 使用SQLite存储数据
一.SQLiteAndroid 为了让我们能够更加方便地管理数据库, 专门提供了一个SQLiteOpenHelper 帮助类,借助这个类就可以非常简单地对数据库进行创建和升级. 1.SQLiteOpe ...
- 【Excle数据透视表】如何让字段标题不显示“求和项”
我们做好了数据透视表之后是下面这个样子的 这个样子一点都不好看,那么如何去掉"求和项"呢? 步骤 方法① 单击B3单元格→编辑区域输入"数量 "→Enter(也 ...
- discuz !NT 3.5 论坛整合 .net 网站用户登录,退出
using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.HtmlCont ...
- 压力测试衡量CPU的三个指标:CPU Utilization、Load Average和Context Switch Rate
分类: 4.软件设计/架构/测试 2010-01-12 19:58 34241人阅读 评论(4) 收藏 举报 测试loadrunnerlinux服务器firebugthread 上篇讲如何用LoadR ...
- 转 拉姆达表达式,委托、匿名方法、Lambda表达式的演进
总结:Lambda表达式的语法:(参数列表=>执行语句) 无参数格式 :()=>{执行语句} 有参数格式:x=> x % 2 == 0 1.假设给我们一个泛型对象List<T& ...