poj 3436 网络流构图经典
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 6012 | Accepted: 2083 | Special Judge | ||
Description
As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.
Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.
Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.
Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.
Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.
The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.
After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.
As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.
Input
Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part j, Di,k — output specification for part k.
Constraints
1 ≤ P ≤ 10, 1 ≤ N ≤ 50, 1 ≤ Qi ≤ 10000
Output
Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.
If several solutions exist, output any of them.
Sample Input
Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1
Sample Output
Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0
Hint
Source
大概题意,每个机器有P个组件组成,现在给你M个机器的信息,问你最多能组装多少个电脑。
没行第一个参数 能容纳多少台电脑(可以看成网络流中,没条路的容量)
接下来有2P个参数 0 表示不需要 1表示必须有 2可以可有可无第2~p个参数 分别是安装这个电脑前需要的的条件
第p+1个参数到2P个参数表示 安装好后的机器具备那些组件例1测试数据:
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
第一台机器可以装容纳15台机器,生产条件是全0(红色部分) 生产结果是(绿色部分) 这里只有第3第4台机器可以把整台电脑安装好,而进入机器3需要条件 0 1 2也就是第二个部件必须有,显然刚由1生产过的电脑能送到机器3组装成完整的电脑
这里我们可以采用拆点的方法去建立一个图来进行最短增广路得出结果当然需要有一个超级汇点和超级源点,显然把生产条件都是0的与超级源点相连,生产结果全为1的与超级汇点相连 权值当然是无穷大。然后把每台机器的生产条件和生产结果连接起来,因为在同一台机器。当然是连通的拉!权值当然是自己所能容纳的量机器之间怎么连接?00 11 21 12都可以匹配,而01 10就不能匹配,所以我们就可以轻易得出结论同部件相加等于1的机器不能相连;相连的机器权值为无穷大,这样我们的图就建好了!然后就可以用spfa,EK,dinic等算法解决,我这里用的是ISAP。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
int p,n;
int a[][];
int edge[][];
int flow[][];
int start,end;
int head[];
int pp[];
int EK(){
memset(flow,,sizeof(flow));
memset(head,-,sizeof(head)); int sum=;
while(true){
queue<int>q;
q.push(start);
memset(pp,,sizeof(pp)); pp[start]=0x7fffffff; while(!q.empty()){
int u=q.front();
q.pop();
for(int v=;v<=n+;v++){
if(!pp[v]&&edge[u][v]>flow[u][v]){
head[v]=u;
q.push(v);
pp[v]=min(pp[u],edge[u][v]-flow[u][v]); }
} } if(pp[end]==)
break;
for(int i=end;i!=start;i=head[i]){
flow[head[i]][i]+=pp[end];
flow[i][head[i]]-=pp[end];
}
sum+=pp[end];
}
return sum; }
int main(){
while(scanf("%d%d",&p,&n)!=EOF){
memset(a,,sizeof(a));
memset(edge,,sizeof(edge));
start=;
end=n+;
for(int i=;i<=*p+;i++){
a[][i]=;
a[n+][i]=;
}
for(int i=;i<=n;i++){
for(int j=;j<=*p;j++){
scanf("%d",&a[i][j]);
}
} for(int i=;i<=n+;i++){
for(int j=;j<=n+;j++){
if(i==j)
continue;
bool flag=true;
for(int k=;k<=p;k++){
if(!(a[j][k]==||a[i][k+p]==a[j][k]))
flag=false; } if(flag&&i==){
edge[][j]=a[j][];
}
else if(flag&&j==n+){
edge[i][n+]=a[i][];
}
else if(flag){
edge[i][j]=min(a[i][],a[j][]);
} }
} int total=EK();
printf("%d ",total);
int cnt=;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(flow[i][j]>)
cnt++;
}
}
printf("%d\n",cnt);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(flow[i][j]>){
printf("%d %d %d\n",i,j,flow[i][j]);
}
}
} }
return ;
}
poj 3436 网络流构图经典的更多相关文章
- A - ACM Computer Factory POJ - 3436 网络流
A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...
- ACM Computer Factory POJ - 3436 网络流拆点+路径还原
http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ - 3436 ACM Computer Factory 网络流
POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)
题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...
- POJ 1149 PIGS ★(经典网络流构图)
[题意] 有M个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依 次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每 个顾客分别都有他能够买的数量的上限.每个顾客走后, ...
- poj 1149经典网络流构图
题意:m个猪圈,n个客户,每个客户给出选则猪圈的钥匙和需要购买猪的个数,其中每次客户购买时客户选则的猪圈数量可以相互更换,问最大购买数量. 思路:以客户作为除源点汇点之外的点,然后对于每个猪圈从源点连 ...
- 网络流相关知识点以及题目//POJ1273 POJ 3436 POJ2112 POJ 1149
首先来认识一下网络流中最大流的问题 给定一个有向图G=(V,E),把图中的边看做成管道,边权看做成每根管道能通过的最大流量(容量),给定源点s和汇点t,在源点有一个水源,在汇点有一个蓄水池,问s-t的 ...
随机推荐
- 【PC-x86-x64】JDK 32bit与64bit的区别及x64 PC的发展历程【转】
一次偶然分析的机会: 在进行Minecraft也就是所谓的我的世界游戏的时候,在对局域网进行开放的时候,我的是64bit的JDK,而我同学的是32bit的JDK,所以在进行局域网链接的时候就会出现In ...
- checkboxlist如何配置数据源?
在做项目中,通常checkboxlist中的checkitems不是固定的,需要绑定可变的数据源,把数据添加到list集合中,代码如下 DataSet myData = new DataSet(); ...
- 私有maven库发布及使用流程
## 私有maven库发布流程 ### 环境配置 - idea环境下,如果使用内置maven,需要手动生成settings.xml,并关联. - 操作如下 - 生成settings.xml 右键pom ...
- oracle下表空间、用户创建以及用户授权流程
Oracle,表空间的建立.用户创建以及用户授权 主要是以下几步,挑选需要的指令即可: # 首先以scott用户作为sysdba登陆 conn scott/tiger as sysdba #创建用户 ...
- 怎么退出jQuery的each函数
返回 'false' 将停止循环 (就像在普通的循环中使用 'break').返回 'true' 跳至下一个循环(就像在普通的循环中使用'continue'). 以下举例如何退出 each 函数和退出 ...
- lnamp高性能架构之apache和nginx的整合
搭建过lamp博友和lnmp的博友们可能对这这两个单词并不陌生,对与apachen,nginx相比都源码或yum安装过,但知道apache的nginx的优点,apache处理动态页面很强,nginx处 ...
- scrapy--doutu
年轻人都爱斗图,可是有时候斗图的数量比较少.就想办法收藏其他的人图片,然而只要能在doutula网页里爬取图片,是一件很棒的的事,看别人写爬斗图的爬虫程序有点麻烦,自己也来动动手,简单,实用.给大家分 ...
- rootfls(根操作系统)
rootfs根文件系统,linux下的任何目录都是rootfs的一个路径 Files 文件 Directory 目录 FHS(文件层级标准)规定了linux发行标准,也就是一些固定的文件存储 文件 ...
- POJ 2441 状压DP
Arrange the Bulls Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 5289 Accepted: 2033 ...
- Numpy基础数据结构 python
Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数据 1.一维数组 import numpy as np ar = np.a ...