题目大意:有$n(n\leqslant10^5)$种物品,第$i$个物品体积为$v_i$,都有$10^5$件。给定$m(m\leqslant10^5)$,对于$s\in [1,m]$,请你回答用这些商品恰好装$s$体积的方案数

题解:(by Weng_weijie)

背包问题模板(误)

对每个物品构造生成函数$F(x)=\displaystyle\sum_{i=0}^{\infty}x^{vi}=\dfrac{1}{1-x^v}$

然后所有相乘就得到答案(不会乘)

对每个多项式求$\ln$加起来再求$\exp$,但是一个个求也不行(复杂度$O(nm)$),可以记录一下每个$v_i$的出现次数,一次性加起来,这样处理出原式子的复杂度是$O(m\log_2m)$

于是:

$$
\begin{align*}
\ln F(x)&=\int \frac{F'(x)}{F(x)} dx \\\\
&=\int \sum_{i=1}^{\infty}vix^{vi-1}(1-x^v) dx \\\\
&=\int \sum_{i=1}^{\infty}vx^{vi-1} dx\\\\
&=\sum_{i=1}^{\infty}\frac{1}{i}x^{vi}
\end{align*}
$$

然后加起来求$\exp$

卡点:数组开小

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 100010
#define N (262144 | 3)
const int mod = 998244353, G = 3;
int n, m;
int inv[N], a[N], b[N];
int num[maxn], maxvi;
namespace Poly {
inline int pw(int base, int p) {
int res = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
return res;
}
inline int Inv(int x){return pw(x, mod - 2);}
int lim, ilim, s, rev[N];
int Wn[N];
inline void init(int n) {
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = inv[lim];
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int t = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * t % mod;
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op = 1) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
inline void DER(int *A, int *B, int n) {
B[n - 1] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
}
inline void INT(int *A, int *B, int n) {
B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * inv[i] % mod;
}
int C[N];
void INV(int *A, int *B, int n) {
if (n == 1) {B[0] = Inv(A[0]); return ;}
INV(A, B, n + 1 >> 1), init(n << 1);
for (int i = 0; i < n; i++) C[i] = A[i];
for (int i = n; i < lim; i++) C[i] = B[i] = 0;
NTT(B), NTT(C);
for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
int D[N];
inline void LN(int *A, int *B, int n) {
DER(A, D, n), INV(A, B, n);
init(n << 1);
NTT(B), NTT(D);
for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
NTT(D, 0), INT(D, B, n);
for (int i = n; i < lim; i++) B[i] = 0;
}
int E[N], F[N];
void EXP(int *A, int *B, int n) {
if (n == 1) {B[0] = 1; return ;}
EXP(A, B, n + 1 >> 1);
for (int i = 0; i < n << 1; i++) E[i] = F[i] = 0;
LN(B, E, n);
for (int i = 0; i < n; i++) F[i] = A[i];
NTT(B), NTT(E), NTT(F);
for (int i = 0; i < lim; i++) B[i] = (1ll + mod - E[i] + F[i]) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
}
int main() {
scanf("%d%d", &n, &m); m++;
for (int i = 0, x; i < n; i++) scanf("%d", &x), num[x]++, maxvi = std::max(maxvi, x);
inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;
for (int i = 1; i <= maxvi; i++) {
int tmp = num[i];
if (tmp) {
for (int j = i, x = 1; j < m; j += i, x++) a[j] = (a[j] + 1ll * tmp * inv[x]) % mod;
}
}
Poly::EXP(a, b, m);
for (int i = 1; i < m; i++) printf("%d\n", b[i]);
return 0;
}

  

[洛谷P4389]付公主的背包的更多相关文章

  1. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  2. 洛谷 P4389: 付公主的背包

    题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...

  3. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  4. 洛谷P4389 付公主的背包 [生成函数,NTT]

    传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...

  5. 洛谷 4389 付公主的背包——多项式求ln、exp

    题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...

  6. luogu P4389 付公主的背包

    传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...

  7. P4389 付公主的背包

    注意 初始化的时候要这样写 for(int i=1,x;i<=n;i++){ scanf("%d",&x); v[x]++; } for(int i=1;i<= ...

  8. [洛谷P4388] 付公主的矩形

    18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...

  9. 洛谷 P2014 选课(树形背包)

    洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...

随机推荐

  1. 使用免费公开的api接口示例(iOS)

    做项目难免需要测试,要测试就需要一些接口,现在网上的很多接口都是需要收费的. 以下是目前找到的免费 JSON API免费接口 云聚数据 网吧数据 其中选取了一个百度百科的接口 百度接口 百度百科接口: ...

  2. Spring Boot Common application properties(转载)

    转自官方文档:http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.h ...

  3. java.lang.UnsupportedOperationException: Exception occurred during processing request: null

    1.Action有问题,Struts2注解拼写错误,注解包版本不匹配! 2.今天还有一个错误,Tomcat服务器异常,无法启动,Remove/clean后还是无法启动 :极大可能是web.xml 写错 ...

  4. springMVC-基本认识

    MVC设计模式 Controller Model View SpringMVC 1.  实现MVC设计模式的框架 2.  基于springIOC,是spring的一个子模块,不需要整合 核心组件 1. ...

  5. TA-LIB】之MACD

    移动平滑异同平均线(Moving Average Convergence Divergence,简称MACD指标)策略.MACD是查拉尔·阿佩尔(Geral Appel)于1979年提出的,由一快及一 ...

  6. SSO 单点登录总结(PHP)

    本篇文章根据个人理解的知识整理汇总,如有不足之处,请大家多多指正. 单点登录(SSO--Single Sign On)的应用是很普遍的,尤其在大型网站系统中,比如百度,登录百度账号和,再转到百度经验. ...

  7. linxu信号种类

    使用kill -l 命令,可看到linux支持的信号列表: 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGB ...

  8. C# 控件置于最顶层、最底层、隐藏、显示

    控件置于最顶层.最底层 pictureBox1.BringToFront();//将控件放置所有控件最前端 pictureBox1.SendToBack();//将控件放置所有控件最底端 控件隐藏.显 ...

  9. 零基础学css

    选择器:标签选择器.id选择器.类选择器 ---------------------------------------------------------------------------- 标签 ...

  10. 利用HttpClient测试

    import java.io.IOException;import java.security.cert.CertificateException;import java.security.cert. ...