题目大意:有$n(n\leqslant10^5)$种物品,第$i$个物品体积为$v_i$,都有$10^5$件。给定$m(m\leqslant10^5)$,对于$s\in [1,m]$,请你回答用这些商品恰好装$s$体积的方案数

题解:(by Weng_weijie)

背包问题模板(误)

对每个物品构造生成函数$F(x)=\displaystyle\sum_{i=0}^{\infty}x^{vi}=\dfrac{1}{1-x^v}$

然后所有相乘就得到答案(不会乘)

对每个多项式求$\ln$加起来再求$\exp$,但是一个个求也不行(复杂度$O(nm)$),可以记录一下每个$v_i$的出现次数,一次性加起来,这样处理出原式子的复杂度是$O(m\log_2m)$

于是:

$$
\begin{align*}
\ln F(x)&=\int \frac{F'(x)}{F(x)} dx \\\\
&=\int \sum_{i=1}^{\infty}vix^{vi-1}(1-x^v) dx \\\\
&=\int \sum_{i=1}^{\infty}vx^{vi-1} dx\\\\
&=\sum_{i=1}^{\infty}\frac{1}{i}x^{vi}
\end{align*}
$$

然后加起来求$\exp$

卡点:数组开小

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 100010
#define N (262144 | 3)
const int mod = 998244353, G = 3;
int n, m;
int inv[N], a[N], b[N];
int num[maxn], maxvi;
namespace Poly {
inline int pw(int base, int p) {
int res = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
return res;
}
inline int Inv(int x){return pw(x, mod - 2);}
int lim, ilim, s, rev[N];
int Wn[N];
inline void init(int n) {
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = inv[lim];
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int t = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * t % mod;
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op = 1) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
inline void DER(int *A, int *B, int n) {
B[n - 1] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
}
inline void INT(int *A, int *B, int n) {
B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * inv[i] % mod;
}
int C[N];
void INV(int *A, int *B, int n) {
if (n == 1) {B[0] = Inv(A[0]); return ;}
INV(A, B, n + 1 >> 1), init(n << 1);
for (int i = 0; i < n; i++) C[i] = A[i];
for (int i = n; i < lim; i++) C[i] = B[i] = 0;
NTT(B), NTT(C);
for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
int D[N];
inline void LN(int *A, int *B, int n) {
DER(A, D, n), INV(A, B, n);
init(n << 1);
NTT(B), NTT(D);
for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
NTT(D, 0), INT(D, B, n);
for (int i = n; i < lim; i++) B[i] = 0;
}
int E[N], F[N];
void EXP(int *A, int *B, int n) {
if (n == 1) {B[0] = 1; return ;}
EXP(A, B, n + 1 >> 1);
for (int i = 0; i < n << 1; i++) E[i] = F[i] = 0;
LN(B, E, n);
for (int i = 0; i < n; i++) F[i] = A[i];
NTT(B), NTT(E), NTT(F);
for (int i = 0; i < lim; i++) B[i] = (1ll + mod - E[i] + F[i]) * B[i] % mod;
NTT(B, 0);
for (int i = n; i < lim; i++) B[i] = 0;
}
}
int main() {
scanf("%d%d", &n, &m); m++;
for (int i = 0, x; i < n; i++) scanf("%d", &x), num[x]++, maxvi = std::max(maxvi, x);
inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;
for (int i = 1; i <= maxvi; i++) {
int tmp = num[i];
if (tmp) {
for (int j = i, x = 1; j < m; j += i, x++) a[j] = (a[j] + 1ll * tmp * inv[x]) % mod;
}
}
Poly::EXP(a, b, m);
for (int i = 1; i < m; i++) printf("%d\n", b[i]);
return 0;
}

  

[洛谷P4389]付公主的背包的更多相关文章

  1. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  2. 洛谷 P4389: 付公主的背包

    题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...

  3. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  4. 洛谷P4389 付公主的背包 [生成函数,NTT]

    传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...

  5. 洛谷 4389 付公主的背包——多项式求ln、exp

    题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...

  6. luogu P4389 付公主的背包

    传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...

  7. P4389 付公主的背包

    注意 初始化的时候要这样写 for(int i=1,x;i<=n;i++){ scanf("%d",&x); v[x]++; } for(int i=1;i<= ...

  8. [洛谷P4388] 付公主的矩形

    18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...

  9. 洛谷 P2014 选课(树形背包)

    洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...

随机推荐

  1. java基础 序列化反序列化流 实现Serializable 接口 自动装载序列号到对象文本文件如修改不能反序列化对象文本,除非自定义long型常量 打印流

    package com.swift.baseKnowledge; import java.io.File; import java.io.FileInputStream; import java.io ...

  2. Spring框架基础2

    Spring框架基础2 测试Spring的AOP思想和注解的使用 导包(在前面的基础上添加) SpringAOP名词解释 AOP编程思想:横向重复代码,纵向抽取:就是说多个地方重复的代码可以抽取出来公 ...

  3. Java自定义异常信息

    通常在开发过程中,会遇到很多异常,对于一些知道异常的原因,这时候想要返回给浏览器,就需要自定义系统的异常 1.Spring  注入异常处理类 <bean id ="commonExce ...

  4. Ansible工作架构和原理

    特性 模块块化调用持定的模块,完成持定任务 有Paramiko,PyYAML,Jinja2(模板语言)三个关键模块 支持自定义模块 基于Python语法头现 部署简单,基于python和SSH(默认已 ...

  5. Python 遗传算法实现字符串

    Python 遗传算法实现字符串 流程 1. 初始化 2. 适应度函数 3. 选择 4. 交叉 5. 变异 适应度函数计算方法 计算个体间的差:分别计算每个元素与目标元素的差取平方和 种群:计算总体均 ...

  6. Redis 持久化操作

    hash类型 类比:mysql数据库存储数据 持久化操作 以本身的数据以文件形式保存到硬盘中 手动快照持久化 i 备份机制(频率) vi redis.conf save 900 1  900s如果一个 ...

  7. Flask初学者:视图函数/方法返回值(HTML模板/Response对象)

    返回HTML模板:使用“from flask import render_template”,在函数中传入相对于文件夹“templates”HTML模板路径名称字符串即可(默认模板路径),flask会 ...

  8. Black Box POJ1442

    Description Our Black Box represents a primitive database. It can save an integer array and has a sp ...

  9. パラメータID一覧

    名称 内容 ABK 処理グループ. AUF 受注伝票タイプ. AVE FI:支払明細通知書のテンプレート登録. BAR 伝票タイプ. BNK 銀行コード. BUK 会社コード. CAC 管理領域. D ...

  10. samba server on Mac OS X Lion Server

    一般Mac共享通过配置wins,smb即可实现.注意在同一个工作组! 参考:http://computers.tutsplus.com/tutorials/how-to-set-up-an-smb-s ...