Asymptotic I Catalan Number
卡特兰数出现在许多计数问题中。
常见的例子有:$n$ 个节点的有序二叉树,$2n$ 个括号构成的合法括号序列。
在上面所举的两个例子中,很容易看出卡特兰数满足递推:
$$
C_{n+1} = \sum_{i = 0}^{n} C_i C_{n-i }, \quad(n \ge 1)
$$
$C_0 = 1$
卡特兰数的闭形式,亦即上述递推式的解为
$$
C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}
$$
曾经我对于如何推导这个式子很感兴趣,实际上推导过程很容易搜到,维基百科上就有。
现在我摘录一种最常见的借助生成函数的证明,以备查看。
定义 $C_n$ 的生成函数
$$
c(x) = \sum_{n = 0}^{\infty} C_n x^n
$$
为了利用上述递推关系,我们考虑 $c(x)^2$ 的幂级数展开式中 $x^n$ 项的系数
\begin{aligned}
c(x)^2 &= \sum_{n = 0}^\infty \sum_{i = 0}^{n} C_i C_{n-i} x^n \\
&= \sum_{n = 0}^\infty C_{n+1} x^n
\end{aligned}
于是有
\begin{equation}
c(x) = 1 + xc(x)^2 \label{E:1}
\end{equation}
\eqref{E:1} 是关于 $c(x)$ 的一元二次方程,解之即得 $c(x)$ 的闭形式,再将此闭形式展开即得 $C_n$ 的表达式。
解得
$$ c(x) = \frac{1 \pm \sqrt{1 - 4x}} {2x} $$
注意到 $c(x)$ 在 $x = 0$ 处的极限应为 $0$,据此可知上式中分母上应取负号,即
\begin{equation}
c(x) = \frac{1 - \sqrt{1 - 4x}} {2x} \label{E:2}
\end{equation}
现在问题归结为如何将 \eqref{E:2} 展成幂级数。
要解决这个问题,我们需要知道一个东西,那就是二项式定理的推广形式。
回忆我们所学过的二项式定理,$(x + y)^n$ 中的指数 $n$ 必须是非负整数。先哲牛顿推广了初等的二项式定理,他证明了指数可以为任意实数 $r$,二项式定理同样成立。即有
$$(x+y)^r = \sum_{k = 0}^{\infty} \binom{r}{k} x^k y ^{r-k} $$
其中
$$\binom{r}{k} = \frac{r (r-1) (r-2) \dots (r - k + 1)} {k!}$$
$r (r-1) (r-2) \dots (r - k + 1)$ 也称作「$r$ 的降 $k$ 阶乘」,记作 $(r)_k$,这种记法称作 Pochhammer 符号。
二项式定理的一般形式在物理上很有用处,我念本科时不知道这么个好东西,常常看不懂书上的一些推导过程。
借助推广的二项式定理,我们很容易写出 $\sqrt{1 - 4x}$ 的展开式
\begin{aligned}
\sqrt{1 - 4x} &= (1 - 4x)^{1/2} \\
&= \sum_{k = 0}^{\infty}\binom{1/2}{k} (-4x)^k \\
&= \sum_{k = 0}^{\infty} \frac{(-1)^{k-1}(2k-3)!!}{2^k k!} (-4x)^k \\
&= \sum_{k = 0}^{\infty} \frac{(-1)^{k-1}}{4^k (2k -1) }\frac{2^k (2k-1)!!}{k!} (-4x)^k \\
&= \sum_{k = 0}^{\infty} \frac{(-1)^{k-1}}{4^k (2k -1) } \binom{2k}{k} (-4x)^k \\
&= \sum_{k = 0}^{\infty} \frac{-1}{ 2k -1 } \binom{2k}{k} x^k
\end{aligned}
进而
\begin{aligned}
1 - \sqrt{1 - 4x} &= \sum_{k = 1}^{\infty} \frac{1}{ 2k -1 } \binom{2k}{k} x^k \\
&= \sum_{k = 0}^{\infty} \frac{1}{ 2k + 1 } \binom{2k+2}{k+1} x^{k+1} \\
&= \sum_{k = 0}^{\infty} \frac{2}{k+1} \binom{2k}{k} x^{k+1}
\end{aligned}
从而
$$ \frac{1 - \sqrt{1 - 4x}} {2x} = \sum_{k = 0}^{\infty} \frac{1}{ k+1 } \binom{2k}{k} x^k $$
因此
$$ C_n = \frac{1}{n+1} \binom{2n}{n} $$
补充
$C_n$ 还可写成
$$ C_n = \binom{2n}{n} - \binom{2n}{n + 1} $$
另外,$C_n$ 的相邻两项满足
$$ C_{n+1} = \frac{2(2n+1)}{n + 2} C_n $$
Asymptotic I Catalan Number的更多相关文章
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- 卡特兰数 catalan number
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...
- 【知识总结】卡特兰数 (Catalan Number) 公式的推导
卡特兰数的英文维基讲得非常全面,强烈建议阅读! Catalan number - Wikipedia (本文中图片也来源于这个页面) 由于本人太菜,这里只选取其中两个公式进行总结. (似乎就是这两个比 ...
- Lucas定理 & Catalan Number & 中国剩余定理(CRT)
又双叒叕来水数论了 今天来学习\(Lucas \:\ \& \:\ Catalan Number\) 两者有着密切的联系(当然还有CRT),所以放在一起学习一下 \(Lucas\) 定义\(\ ...
- Catalan Number 卡特兰数
内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...
- 卡特兰数(Catalan Number) 学习笔记
一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...
- 浅谈 Catalan number——卡特兰数
一.定义: 卡特兰数是一组满足下面递推关系的数列: 二.变形: 首先,设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式: h(n)= h(0)*h(n ...
- catalan number
http://blog.csdn.net/yutianzuijin/article/details/13161721
随机推荐
- 第34-3题:LeetCode437. Path Sum III
题目 二叉树不超过1000个节点,且节点数值范围是 [-1000000,1000000] 的整数. 示例: root = [10,5,-3,3,2,null,11,3,-2,null,1], sum ...
- 牛客小白月赛1 I あなたの蛙が帰っています 【卡特兰数】
链接:https://www.nowcoder.com/acm/contest/85/I题目描述 あなたの蛙が帰っています! 蛙蛙完成了一趟旅行,回家啦!但它还是没有去它心中非常想去的几个地方.总共 ...
- JS - 把类似document.querySelectorAll(".xxx")、document.getElementsByName("xxx")这种方法的返回结果转换成数组对象
var btns = document.querySelectorAll(".btn");console.log(btns instanceof Array); // falseb ...
- python核心编程2 第五章 练习
5-2 运算符(a) 写一个函数,计算并返回两个数的乘积(b) 写一段代码调用这个函数,并显示它的结果 def product(x, y): return x * y if __name__ == ' ...
- 标签种类及CSS引入方法
标签种类及CSS引入方法 标签种类: 一:块级标签(block) ——> 独占一行,默认宽度与内容无关,宽高可设 (hr 块级标签) 二:行内块标签(inline-block) ——> ...
- 线程、进程、协程和GIL(三)
上一篇文章介绍了:创建线程的两种方式.Event对象判断线程是否启动.利用信号量控制线程并发. 博客链接:线程.进程.协程和GIL(二) 这一篇来说说线程间通信的那些事儿: 一个线程向另一个线程发送数 ...
- 字符串的输入问题 C++
C++中,初学时最常用的输入字符的方式为cin,但是,cin是如何确定已经完成了字符串的输入了呢?由于不能通过键盘输入空字符("\0"),因此cin需要用别的方法来确定字符串的结尾 ...
- python——input()函数
在使用input()内置函数输入数字时,要注意一点: input()的返回值始终是字符串,所以type(number)永远是<class 'str'>! 如: >>> t ...
- idea录制宏
录制一个热部署的快捷键 1.打开Edit-->Macros-->statr Macro Recording 打开之后idea右下角就会出现一个小圆点 然后就可以开始录制自己想要的快捷键 按 ...
- Adobe Photoshop Lightroom 5.3和序列号
Adobe Photoshop Lightroom是一款针对专业摄影师开发的专业照片管理和处理软件.12.11发布了Lightroom 5.3正式版,这个版本支持RAW格式(相机原始数据格式),镜头配 ...