BZOJ4890 [Tjoi2017]城市 【树形dp】
题目链接
题解
枚举断开哪一条边,然后对剩余的两棵树分别做一遍换根法树形dp
需要求出每个点到树中其它点距离的最大值\(f[i]\)和次大值\(g[i]\)【用以辅助换根计算最大值】
求出每棵树中的最长路径,然后再将两棵树中\(f[i]\)最小值相连保证相连后产生的最大值最小
\(O(n^2)\)的复杂度
如果怕被卡常,可以知道要切的边一定在直径上,虽然上界没有变,但速度可以快不少
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 5005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int from,to,nxt,w,flag;}ed[maxn << 1];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){u,v,h[u],w,1}; h[u] = ne;
ed[++ne] = (EDGE){v,u,h[v],w,1}; h[v] = ne;
}
int f[maxn],g[maxn],ch[maxn],d[maxn],du,path[maxn],fa[maxn];
int n,ans,fans,mnans;
void DFS(int u,int Fa){
if (d[u] > d[du]) du = u;
Redge(u) if ((to = ed[k].to) != Fa){
d[to] = d[u] + ed[k].w; path[to] = k;
DFS(to,u);
}
}
void dfs(int u){
f[u] = g[u] = 0;
Redge(u) if (ed[k].flag && (to = ed[k].to) != fa[u]){
fa[to] = u; d[to] = ed[k].w; dfs(to);
if (f[to] + ed[k].w > f[u]){
g[u] = f[u];
f[u] = f[to] + ed[k].w;
ch[u] = to;
}
else if (f[to] + ed[k].w > g[u]) g[u] = f[to] + ed[k].w;
}
fans = max(fans,f[u]);
}
void dfs2(int u){
if (fa[u]){
int v = fa[u];
if (ch[v] == u){
if (g[v] + d[u] > f[u]){
g[u] = f[u];
f[u] = g[v] + d[u];
ch[u] = v;
}
else if (g[v] + d[u] > g[u]) g[u] = g[v] + d[u];
}
else {
if (f[v] + d[u] > f[u]){
g[u] = f[u];
f[u] = f[v] + d[u];
ch[u] = v;
}
else if (f[v] + d[u] > g[u]) g[u] = f[v] + d[u];
}
}
Redge(u) if (ed[k].flag && (to = ed[k].to) != fa[u]){
dfs2(to);
}
fans = max(fans,f[u]);
mnans = min(mnans,f[u]);
}
int dp(int rt){
d[rt] = 0; fa[rt] = 0; dfs(rt);
mnans = INF;
dfs2(rt);
return mnans;
}
int main(){
n = read(); int a,b,w; ans = INF;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
d[du = 1] = 0; DFS(1,0);
path[du] = 0; d[du] = 0; DFS(du,0);
int t1,t2;
for (int i = du; path[i]; i = ed[path[i]].from){
int k = path[i];
ed[k].flag = ed[k ^ 1].flag = false;
cls(f); cls(g); fans = 0;
t1 = dp(ed[k].from);
t2 = dp(ed[k].to);
//REP(j,n) printf("%d ",f[j]); puts("");
fans = max(fans,t1 + t2 + ed[k].w);
//printf("(%d,%d) mx = %d\n",ed[k].to,ed[k].from,fans);
ans = min(ans,fans);
ed[k].flag = ed[k ^ 1].flag = true;
}
printf("%d\n",ans);
return 0;
}
BZOJ4890 [Tjoi2017]城市 【树形dp】的更多相关文章
- BZOJ 4890: [Tjoi2017]城市 树形dp
标签:树形dp,枚举,树的直径 一上来看到这个题就慌了,只想到了 $O(n^3)$ 的做法. 碰到这种题时要一步一步冷静地去分析,观察数据范围. 首先,$n\leqslant 5000$,所以可以先 ...
- bzoj4890[Tjoi2017]城市(树的半径)
4890: [Tjoi2017]城市 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 149 Solved: 91[Submit][Status][D ...
- [BZOJ4890][TJOI2017]城市(DP)
题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...
- BZOJ4890 Tjoi2017城市
显然删掉的边肯定是直径上的边.考虑枚举删哪一条.然后考虑怎么连.显然新边应该满足其两端点在各自树中作为根能使树深度最小.只要线性求出这个东西就可以了,这与求树的重心的过程类似. #include< ...
- 树形dp专题总结
树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...
- 【BZOJ4890】[TJOI2017]城市(动态规划)
[BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...
- 洛谷 P1453 城市环路 ( 基环树树形dp )
题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 【牛客】乃爱与城市拥挤程度 — 树形dp,up and down
我太难了 这题做得我要死了,来来回回写了大概八九个小时 错误的原因要么是快速幂写错(一生之敌,要么是忘取模爆\(longlong\)变负数\(QAQ\) \(update\) \(2019.11.13 ...
随机推荐
- js一键复制到剪切板
<div id='demo'>我就是被复制的内容<span>点击复制<span></div> $('#demo').on('click','span', ...
- POJ的层次感分类
转载自:[http://blog.csdn.net/zzycsx/article/details/49103451] OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,po ...
- JS - CommonJS、AMD、CMD
CommonJS CommonJS是一种JS模块定义规范,它出现之初是为了解决JS天生没有模块管理的缺陷,它的终极目标是提供一个类似Python.Ruby和Java标准库.NodeJS的模块系统就是参 ...
- Centos下使用Docker部署MySql
本文讲述 CentOS 系统 Docker 中安装 MySql 的过程 步骤 1. 拉取 Docker Hub 官方提供的mysql镜像 docker pull mysql:5.7 2.运行容器 do ...
- 交换机基础配置之跨交换机划分vlan
我们以上面的拓扑图来进行实验 四台pc机都在同一网段 pc1和pc2在同一台交换机上 pc3和pc4在同一台交换机上 现在我们实验的目的就是将pc1和pc3划分到同一vlan pc2和pc4划分到同一 ...
- php 微信公众号图文消息回复的实现 与access_token
//代码如下 <?phpclass IndexAction extends Action { public function __construct(){ } public function i ...
- PHP表单安全过滤和防注入 htmlspecialchars() 和test_input()
什么是 htmlspecialchars() 函数? htmlspecialchars() 函数把特殊字符转换为 HTML 实体.这意味着 < 和 > 之类的 HTML 字符会被替换为 & ...
- 重头开始学Qt——day1
以前学过Qt,但只是为了学分,现在重学. 1. 认识Qt应用程序框架 直接新建一个项目后,自动生成了一下文件,下面一个个理解. (1)main.cpp main.cpp中特别的是QApplicatio ...
- Hadoop环境搭建 (伪分布式搭建)
一,Hadoop版本下载 建议下载:Hadoop2.5.0 (虽然是老版本,但是在企业级别中运用非常稳定,新版本虽然添加了些小功能但是版本稳定性有带与考核) 1.下载地址: hadoop.apache ...
- 4 Vue.js 核心理念:数据驱动界面
1 style样式放在body里面 <style type="text/css"> .ui.segment.container { width:700px; } p { ...