题目链接

BZOJ4890

题解

枚举断开哪一条边,然后对剩余的两棵树分别做一遍换根法树形dp

需要求出每个点到树中其它点距离的最大值\(f[i]\)和次大值\(g[i]\)【用以辅助换根计算最大值】

求出每棵树中的最长路径,然后再将两棵树中\(f[i]\)最小值相连保证相连后产生的最大值最小

\(O(n^2)\)的复杂度

如果怕被卡常,可以知道要切的边一定在直径上,虽然上界没有变,但速度可以快不少

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 5005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int from,to,nxt,w,flag;}ed[maxn << 1];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){u,v,h[u],w,1}; h[u] = ne;
ed[++ne] = (EDGE){v,u,h[v],w,1}; h[v] = ne;
}
int f[maxn],g[maxn],ch[maxn],d[maxn],du,path[maxn],fa[maxn];
int n,ans,fans,mnans;
void DFS(int u,int Fa){
if (d[u] > d[du]) du = u;
Redge(u) if ((to = ed[k].to) != Fa){
d[to] = d[u] + ed[k].w; path[to] = k;
DFS(to,u);
}
}
void dfs(int u){
f[u] = g[u] = 0;
Redge(u) if (ed[k].flag && (to = ed[k].to) != fa[u]){
fa[to] = u; d[to] = ed[k].w; dfs(to);
if (f[to] + ed[k].w > f[u]){
g[u] = f[u];
f[u] = f[to] + ed[k].w;
ch[u] = to;
}
else if (f[to] + ed[k].w > g[u]) g[u] = f[to] + ed[k].w;
}
fans = max(fans,f[u]);
}
void dfs2(int u){
if (fa[u]){
int v = fa[u];
if (ch[v] == u){
if (g[v] + d[u] > f[u]){
g[u] = f[u];
f[u] = g[v] + d[u];
ch[u] = v;
}
else if (g[v] + d[u] > g[u]) g[u] = g[v] + d[u];
}
else {
if (f[v] + d[u] > f[u]){
g[u] = f[u];
f[u] = f[v] + d[u];
ch[u] = v;
}
else if (f[v] + d[u] > g[u]) g[u] = f[v] + d[u];
}
}
Redge(u) if (ed[k].flag && (to = ed[k].to) != fa[u]){
dfs2(to);
}
fans = max(fans,f[u]);
mnans = min(mnans,f[u]);
}
int dp(int rt){
d[rt] = 0; fa[rt] = 0; dfs(rt);
mnans = INF;
dfs2(rt);
return mnans;
}
int main(){
n = read(); int a,b,w; ans = INF;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
d[du = 1] = 0; DFS(1,0);
path[du] = 0; d[du] = 0; DFS(du,0);
int t1,t2;
for (int i = du; path[i]; i = ed[path[i]].from){
int k = path[i];
ed[k].flag = ed[k ^ 1].flag = false;
cls(f); cls(g); fans = 0;
t1 = dp(ed[k].from);
t2 = dp(ed[k].to);
//REP(j,n) printf("%d ",f[j]); puts("");
fans = max(fans,t1 + t2 + ed[k].w);
//printf("(%d,%d) mx = %d\n",ed[k].to,ed[k].from,fans);
ans = min(ans,fans);
ed[k].flag = ed[k ^ 1].flag = true;
}
printf("%d\n",ans);
return 0;
}

BZOJ4890 [Tjoi2017]城市 【树形dp】的更多相关文章

  1. BZOJ 4890: [Tjoi2017]城市 树形dp

    标签:树形dp,枚举,树的直径 一上来看到这个题就慌了,只想到了 $O(n^3)$ 的做法. 碰到这种题时要一步一步冷静地去分析,观察数据范围. 首先,$n\leqslant 5000$,所以可以先 ...

  2. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  3. [BZOJ4890][TJOI2017]城市(DP)

    题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...

  4. BZOJ4890 Tjoi2017城市

    显然删掉的边肯定是直径上的边.考虑枚举删哪一条.然后考虑怎么连.显然新边应该满足其两端点在各自树中作为根能使树深度最小.只要线性求出这个东西就可以了,这与求树的重心的过程类似. #include< ...

  5. 树形dp专题总结

    树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...

  6. 【BZOJ4890】[TJOI2017]城市(动态规划)

    [BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...

  7. 洛谷 P1453 城市环路 ( 基环树树形dp )

    题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...

  8. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  9. 【牛客】乃爱与城市拥挤程度 — 树形dp,up and down

    我太难了 这题做得我要死了,来来回回写了大概八九个小时 错误的原因要么是快速幂写错(一生之敌,要么是忘取模爆\(longlong\)变负数\(QAQ\) \(update\) \(2019.11.13 ...

随机推荐

  1. Mysql5.7创建存储过程中调用自定义函数报错Not allowed to return a result set from a function

    因为很多存储过程都会共用一段sql语句,所以我把共用的sql封装成一个自定义函数 AddCapital(); 然后通过存储过程调用,创建存储过程会报错1415,Not allowed to retur ...

  2. MySQL备份工具percona-xtrabackup安装

    1.安装xtrabackup的yum源 rpm -ivh https://www.percona.com/redir/downloads/percona-release/redhat/latest/p ...

  3. VMware运行时“内部错误”的解决方法

    解决方法:打开虚拟机实体目录,如下:发现有两个虚拟机配置文件,一个文件大小为4KB,另一个为空.现在虚拟机默认使用为空的配置文件了. 将大小为空的虚拟机配置文件删除掉,然后将另一个配置文件重名命. 接 ...

  4. HttpServletRequest cannot be resolved to a type The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path

    HttpServletRequest cannot be resolved to a type The superclass "javax.servlet.http.HttpServlet& ...

  5. 海龟绘图turtle模块的使用

    在本章中,我们将编写简短的.简单的程序来创建漂亮的.复杂的视觉效果.为了做到这一点,我们可以使用海龟作图软件.在海龟作图中,我们可以编写指令让一个虚拟的(想象中的)海龟在屏幕上来回移动.这个海龟带着一 ...

  6. MySQL Limit 限定查询记录数

    MySQL Limit 限定查询记录数 MySQL LIMIT MySQL 中 LIMIT 关键字用于限定查询记录返回最大数目. 语法: ... LIMIT offset , rows 该语法中,of ...

  7. Reward HDU - 2647

    传送门     Dandelion's uncle is a boss of a factory. As the spring festival is coming , he wants to dis ...

  8. python——int()函数

    1. 使用 int() 将小数转换为整数,结果是向上取整还是向下取整呢? 小数取整会采用比较暴力的截断方式,即向下取整.(注:5.5向上取整为6,向下取整为5) 2. 我们人类思维是习惯于“四舍五入” ...

  9. 2753: [SCOI2012]滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 910 Descriptio ...

  10. windows 定时任务 - 定时关机

    添加定时关机,刚好可以利用windows定时任务 [开始]->[控制面板]->[任务计划]->[添加任务计划] 1.找到 shutdown.exe 设置每天执行 2.设置晚上10点 ...