POJ 2243 [SDOI2011]染色 | 树链剖分+线段树
肯定是树链剖分的题啦
树剖怎么做可以看我上一篇博客
如果我们已经剖完了:
然后考虑怎么维护重链和查询
用线段树维护的时候当前区间的区间颜色个数应该等于左儿子+右儿子,但是当左儿子的右端点和右儿子的左端点颜色一样,显然区间数要减1
所以每个节点存一下左端点的右端点颜色正常维护即可
考虑查询,在同一重链上的点显然线段树可以解决,当top[u]!=top[v]的时候,得让deep较深的爬树,那么答案就要+=爬树那一段的区间个数
但是有可能的是fa[top[u]]的颜色和top[u]的颜色相等,这个时候需要答案--,这样才能保证下次爬树的时候不会多算
注意:请写单点查询询问颜色,因为fa[top[u]]和top[u]是轻链的两端,不能保证在线段树中编号连续,所以不能区间查询是否是个数是1
修改同理,爬树的时候修改即可
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 100010
using namespace std;
int n,m,head[N],indx[N],pos[N],fa[N],ecnt,color[N],deep[N],sz[N],top[N],a,b,c,tot,son[N];
char s[N];
int read()
{
int ret=,neg=;
char j=getchar();
for (;j>'' || j<'';j=getchar())
if (j == '-') neg=-;
for (;j>='' && j<='';j=getchar())
ret=ret*+j-'';
return ret*neg;
}
struct adj
{
int nxt,v;
}e[*N];
struct node
{
int l,r,Lcolor,Rcolor,sum,lz;
}t[*N];
void add(int u,int v)//加边
{
e[++ecnt].v=v;
e[ecnt].nxt=head[u];
head[u]=ecnt;
e[++ecnt].v=u;
e[ecnt].nxt=head[v];
head[v]=ecnt;
}
void dfs1(int x,int father,int d)//第一次dfs
{
fa[x]=father,deep[x]=d,sz[x]=;
for (int i=head[x];i;i=e[i].nxt)
{
int v=e[i].v;
if (v==father) continue;
dfs1(v,x,d+);
sz[x]+=sz[v];
if (sz[son[x]]<sz[v]) son[x]=v;
}
}
void dfs2(int x,int TOP)//第二次dfs
{
pos[x]=++tot;
indx[tot]=x;
top[x]=TOP;
if (son[x]) dfs2(son[x],TOP);
for (int i=head[x];i;i=e[i].nxt)
{
int v=e[i].v;
if (v==fa[x] || v==son[x]) continue;
if (v!=) dfs2(v,v);
}
}
void pushup(int p)//线段树更新
{
t[p].sum=t[p<<].sum+t[p<<|].sum;
if (t[p<<].Rcolor==t[p<<|].Lcolor) t[p].sum--;
t[p].Lcolor=t[p<<].Lcolor;
t[p].Rcolor=t[p<<|].Rcolor;
}
void pushdown(int p)//lazy下放
{
if (t[p].l==t[p].r || t[p].lz==-) return;
int w=t[p].lz;
t[p<<].Lcolor=t[p<<].Rcolor=t[p<<|].Lcolor=t[p<<|].Rcolor=t[p<<].lz=t[p<<|].lz=w;
t[p<<].sum=t[p<<|].sum=;
t[p].lz=-;
}
void build(int p,int l,int r)//建树
{
t[p].l=l,t[p].r=r,t[p].lz=-;
if (l==r)
{
t[p].Lcolor=t[p].Rcolor=color[indx[l]];
t[p].sum=;
}
else
{
int mid=l+r>>;
build(p<<,l,mid);
build(p<<|,mid+,r);
pushup(p);
}
}
void modify(int p,int l,int r,int k)//区间修改
{
if (l==t[p].l && r==t[p].r)
{
t[p].sum=;
t[p].Lcolor=t[p].Rcolor=k;
t[p].lz=k;
return;
}
pushdown(p);
int mid=t[p].l+t[p].r>>;
if (r<=mid)
modify(p<<,l,r,k);
else if (l>mid) modify(p<<|,l,r,k);
else
modify(p<<,l,mid,k),modify(p<<|,mid+,r,k);
pushup(p);
}
int query(int p,int l,int r)//区间询问
{
if (l==t[p].l && r==t[p].r)
return t[p].sum;
pushdown(p);
int mid=t[p].l+t[p].r>>;
if (r<=mid)
return query(p<<,l,r);
if (l>mid) return query(p<<|,l,r);
int tmp=query(p<<,l,mid)+query(p<<|,mid+,r);
if (t[p<<].Rcolor==t[p<<|].Lcolor) tmp--;
return tmp;
}
int Qcolor(int p,int l)//单点询问
{
if (t[p].l==t[p].r && t[p].l==l) return t[p].Lcolor;
pushdown(p);
int mid=t[p].l+t[p].r>>;
if (l<=mid) return Qcolor(p<<,l);
else return Qcolor(p<<|,l);
}
void getcolor(int a,int b,int w)//修改
{
while (top[a]!=top[b])//爬树
{
if (deep[top[a]]<deep[top[b]]) swap(a,b);
modify(,pos[top[a]],pos[a],w);
a=fa[top[a]];
}
if (deep[a]>deep[b]) swap(a,b);
modify(,pos[a],pos[b],w);
}
int querycolor(int u,int v)//询问
{
int ret=;
while (top[u]!=top[v])
{
if (deep[top[u]]<deep[top[v]]) swap(u,v);
ret+=query(,pos[top[u]],pos[u]);
if (Qcolor(,pos[fa[top[u]]])==Qcolor(,pos[top[u]])) ret--;//看题解
u=fa[top[u]];
}
if (deep[u]>deep[v]) swap(u,v);
return ret+query(,pos[u],pos[v]);
}
int main()
{
n=read(),m=read();
for (int i=;i<=n;i++)
color[i]=read();
for (int i=;i<n;i++)
add(read(),read());
dfs1(,,);
dfs2(,);
build(,,n);
while (m--)
{
scanf("%s",s);
if (s[]=='C')
{
a=read(),b=read(),c=read();
getcolor(a,b,c);
}
else
{
scanf("%d%d",&a,&b);
printf("%d\n",querycolor(a,b));
}
}
return ;
}
POJ 2243 [SDOI2011]染色 | 树链剖分+线段树的更多相关文章
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
- BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)
题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...
- POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )
POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树
题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
随机推荐
- Java分享笔记:FileInputStream流的 read()方法 和 read(byte[] b)方法
/*------------------------ FileInputStream: ....//输入流,字节流 ....//从硬盘中存在的一个文件中读取内容,读取到程序中 ....//read() ...
- .NET向WebService传值为decimal、double、int、DateTime等非string类型属性时,服务器端接收不到数据的问题
最近在做CRM项目时,使用C#调用SAP PI发布的WebService服务时遇到的问题: 向WebService传值为decimal.double.int.DateTime等非string类型数据时 ...
- 读键值对封装成Map
描述: 有配置文件address_relation.properties,记录地址关系,有如下数据:ZSSS=ZS%,ZSPD, 封装到Map代码如下: public static void main ...
- [Codeforces958F2]Lightsabers (medium)(思维)
Description 题目链接 Solution 设一个l指针指向当前数列左边,从左往右扫描一遍,将当前颜色记录, 当所有颜色都得到后,进行判断,如果当前l指向的颜色大于需要的颜色,l后移一位,然后 ...
- python-8错误调试测试
1-错误处理 import logging try: print('try.......') r = 10/0 except ValueError as e: print('result:', e) ...
- Too many parameters: expected 1, was given 2 Query: SELECT count(id) FROM `user` WHERE username = ?; Parameters: [org.apache.commons.dbutils.handlers.ScalarHandler@453da22c, [李明]]
public Object getValue(String sql,Object... args) { Connection conn = null; Object obj= null; try { ...
- ASP.NET 使用 MySQL
基本是通用的 C#与MySQL的交互, 先添加MySQL.Data.dll(位于MySQL安装目录下的Connector NET 8.0\Assemblies${version}目录下)引用, 之后代 ...
- 20145202马超《Java程序设计》第十周学习总结
一.网络编程 1.网络概述 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴.在发送和接收数据 ...
- 微信支付 h5
Android开发要点说明 商户在微信开放平台申请开发应用后,微信开放平台会生成APP的唯一标识APPID.由于需要保证支付安全,需要在开放平台绑定商户应用包名和应用签名,设置好后才能正常发起支付. ...
- 1.bootstrap的HTML文件编写规范
1.head标签里面的内容 <!DOCTYPE html> <html lang="zh-cn"> <head> <!-- 页面编码 -- ...