题目描述

为了庆祝新的一年到来,小M决定要粉刷一个大木板。大木板实际上是一个W*H的方阵。小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形全部刷好。小M乐坏了,于是开始胡乱地使用这个工具。
假设小M每次选的两个格子都是完全随机的(方阵中每个格子被选中的概率是相等的),而且小M使用了K次工具,求木板上被小M粉刷过的格子个数的期望值是多少。

输入

第一行是整数K,W,H

输出

一行,为答案,四舍五入保留到整数。

样例输入

1 3 3

样例输出

4


题解

期望

由于期望具有可加性,因此可以计算出每个格子被染色的概率,加起来即为答案。

那么一个格子被染色的概率即为$1-(每次都不被染色的概率)^k$。

考虑单次染色没有没染的情况:选定的两个点都在左边、上边、右边、下边,但是会发现四个角的部分会计算两次,因此还需要减掉两个点都在左上、左下、右上、右下的情况。然后求幂加起来即可。

  1. #include <cmath>
  2. #include <cstdio>
  3. inline double squ(double x)
  4. {
  5. return x * x;
  6. }
  7. int main()
  8. {
  9. int k , n , m , i , j;
  10. double ans = 0;
  11. scanf("%d%d%d" , &k , &n , &m);
  12. for(i = 1 ; i <= n ; i ++ )
  13. for(j = 1 ; j <= m ; j ++ )
  14. ans += 1 - pow((squ((i - 1) * m) + squ((j - 1) * n) + squ((n - i) * m) + squ((m - j) * n)
  15. - squ((i - 1) * (j - 1)) - squ((i - 1) * (m - j)) - squ((n - i) * (j - 1)) - squ((n - i) * (m - j))) / squ(n * m) , k);
  16. printf("%.0lf\n" , ans);
  17. return 0;
  18. }

【bzoj2969】矩形粉刷 期望的更多相关文章

  1. bzoj2969 矩形粉刷 概率期望

    此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...

  2. bzoj2969 矩形粉刷

    学习一波用markdown写题解的姿势QAQ 题意 给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子. 分析 一开始看错 ...

  3. bzoj2969矩形粉刷

    题解: 和前面那个序列的几乎一样 容斥之后变成求不覆盖的 然后再像差分的矩形那样 由于是随便取的所以这里不用处理前缀和直接求也可以 代码: #include <bits/stdc++.h> ...

  4. 【BZOJ2969】矩形粉刷 概率+容斥

    [BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...

  5. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

  6. BZOJ 2969: 矩形粉刷(期望)

    BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...

  7. bzoj 2969: 矩形粉刷 概率期望+快速幂

    还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 2018 Multi-University Training Contest 6 Solution

    A - oval-and-rectangle 题意:给出一个椭圆的a 和 b,在$[0, b]中随机选择c$ 使得四个顶点在椭圆上构成一个矩形,求矩形周长期望 思路:求出每种矩形的周长,除以b(积分) ...

随机推荐

  1. django模板层之静态文件引入优化

    1.新手使用 我们一般在初学django的情况下,引入django的静态文件一般有如下两种方式: 通过路径引用: <script type="text/javascript" ...

  2. chisel(安装)

    github地址 先安装homeBrew ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/m ...

  3. discuz 被入侵后,最可能被修改的文件

    最近发现站点被黑了,现在还不知道是由系统漏洞导致的系统账户被攻陷,还是程序漏洞,文件被篡改.有一些敏感关键词(例如:赌博,电子路单)被恶意指向,点击搜索结果自动跳转到其他站点,而且是大量的,通过搜索“ ...

  4. MySQL视图、事务

    view(视图):虚拟表主要用来看(查)数据基表的数据变化会在视图中体现出来 权限控制将多表查询的结果整合在视图中方便用户查看 create view v1 as select ...查询语句WITH ...

  5. centos7 多网卡修改默认路由

    最近在virtualbox里搭了一个centos7的虚拟机,但是网络这一块总是有问题. 单网卡下的问题: 1.当我配置连接方式为NAT网络地址转换的时候,虚拟机可以访问外网.但是在网络地址转换的情况下 ...

  6. linux shell 部分问题解决方法

    1.  判断shell里判断字符串是否包含某个字符 a.  可以用正则式匹配符号      “=~” 举例:str="this is a string" 要想在判断str中是否含有 ...

  7. keil5的安装及问题

    win8+keil 注意,在进行破解的时候首先要打开一个工程,而且keil要用管理员的身份进行运行, 才可以破解完成 发现打开之后,出现这样的错误. 原因是因为在创建工程的时候在下图中点了是,要点否才 ...

  8. C——可变参数

    1.要学可变参数,需要先了解C编译器对栈的管理 做个实验可以得到 #include <stdio.h> void func(int a, char b, int c, int d) { i ...

  9. Spring使用mutipartFile上传文件报错【Failed to instantiate [org.springframework.web.multipart.MultipartFile]】

    报错场景: 使用SSM框架实现文件上传时报“Failed to instantiate [org.springframework.web.multipart.MultipartFile]”错,控制器源 ...

  10. 搭建Linpack

    环境:vmware workstation14 + centos7(linux基本都可以) 一.开始安装mpich 1. 解决依赖gcc gcc-gfortran sudo yum install g ...