机器学习13—PCA学习笔记
机器学习实战之PCA
test13.py
#-*- coding:utf-8
import sys
sys.path.append("pca.py") import pca
from numpy import * dataMat = pca.loadDataSet('testSet.txt')
lowDMat, reconMat, eigVals, eigVects = pca.pca(dataMat, 1)
res = shape(lowDMat)
print("lowDMat:")
print(lowDMat) print("reconMat:")
print(reconMat) print("eigVals:")
print(eigVals) print("eigVects:")
print(eigVects) import matplotlib
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
#三角形表示原始数据点
ax.scatter(dataMat[:,0].flatten().A[0],dataMat[:,1].flatten().A[0], marker='^',s=90)
#圆形点表示第一主成分点,点颜色为红色
ax.scatter(reconMat[:,0].flatten().A[0],reconMat[:,1].flatten().A[0], marker='o',s=90,c='red')
plt.show() print("over!!!")
pca.py
'''
Created on Jun 1, 2011 @author: Peter Harrington
'''
from numpy import * def loadDataSet(fileName, delim= '\t'):#delim= ' '
fr = open(fileName)
stringArr = [line.strip().split(delim) for line in fr.readlines()]
datArr = [list(map(float,line)) for line in stringArr]
return mat(datArr) def pca(dataMat, topNfeat=4096):
meanVals = mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals #remove mean
covMat = cov(meanRemoved, rowvar=0)
eigVals,eigVects = linalg.eig(mat(covMat))
eigValInd = argsort(eigVals) #sort, sort goes smallest to largest
eigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensions
redEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallest
lowDDataMat = meanRemoved * redEigVects#transform data into new dimensions
reconMat = (lowDDataMat * redEigVects.T) + meanVals
return lowDDataMat, reconMat, eigVals,eigVects def replaceNanWithMean():
datMat = loadDataSet('secom.data', ' ')
numFeat = shape(datMat)[1]
for i in range(numFeat):
meanVal = mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i]) #values that are not NaN (a number)
datMat[nonzero(isnan(datMat[:,i].A))[0],i] = meanVal #set NaN values to mean
return datMat
机器学习13—PCA学习笔记的更多相关文章
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- 《机器学习实战》学习笔记第九章 —— 决策树之CART算法
相关博文: <机器学习实战>学习笔记第三章 —— 决策树 主要内容: 一.CART算法简介 二.分类树 三.回归树 四.构建回归树 五.回归树的剪枝 六.模型树 七.树回归与标准回归的比较 ...
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- MNIST机器学习入门【学习笔记】
平台信息:PC:ubuntu18.04.i5.anaconda2.cuda9.0.cudnn7.0.5.tensorflow1.10.GTX1060 作者:庄泽彬(欢迎转载,请注明作者) 说明:本文是 ...
- PCA学习笔记
主成分分析(Principal Component Analysis,简称PCA)是最常用过的一种降维方法 在引入PCA之前先提到了如何使用一个超平面对所有的样本进行恰当的表达? 即若存在这样的超平面 ...
- 《机器学习实战》学习笔记——第13章 PCA
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负 ...
- 《机器学习实战》学习笔记第十三章 —— 利用PCA来简化数据
相关博文: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) 主成分分析(PCA)的推导与解释 主要内容: 一.向量內积的几何意义 二.基的变换 三.协方差矩阵 四.PCA求解 一.向量內 ...
- [转]Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)
转自http://blog.csdn.net/c406495762/article/details/75172850 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 一 简 ...
随机推荐
- TCP/IP,http,socket,长连接,短连接 —— 小结
TCP/IP是什么? TCP/IP是个协议组,可分为三个层次:网络层.传输层和应用层. 在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议. 在传输层中有TCP协议 ...
- APIO2018练习赛伪题解
传送门:https://pcms.university.innopolis.ru/statements/org/apio/2018/practice/statements.pdf 主要就在于后面三道构 ...
- Mybatis中的XML中需要用到的转义符号整理
使用这么久的Mybatis中需要转义的符号整理一下,小结一下: 1. < 小于符号 < 2. <= 小于等于 ...
- mysql中单表多timestamp设置default问题
mysql中,同一个表多个timesatmp字段设置default的时候,经常会报错. 一个表只能有一个设置default的字段. 但是有时只有一个字段设置default也会报错. 会报:Incorr ...
- .xcodeprok cannot be opened because the project file cannot be parsed
用svn更新代码后,打开xcode工程文件出现 xxx..xcodeproj cannot be opened because the project file cannot be parsed. 这 ...
- adb devices 找不到设备怎么办 --- 2
问题现象:在电脑上安装好手机驱动后,手机进入设置---->应用程序---->开发----->勾选USB调试后连接电脑,,在CMD命令中输入adb devices发现没有设备. 解决方 ...
- VMware给虚拟机绑定物理网卡
前言: 桥接模式:就是使用真实的IP地址 NAT模式:使用以VMnet 8所指定的子网中分配的IP地址,在外网信息交互中不存在这样的IP. 仅主机模式:仅用于虚拟机与真机之间的信息交互. 操作步骤: ...
- Winform打砖块游戏制作step by step第一节---主界面搭建
一 引子 为了让更多的编程初学者,轻松愉快地掌握面向对象的思考方法,对象继承和多态的妙用,故推出此系列随笔,还望大家多多支持. 二 本节内容---主界面搭建 1.主界面截图 2. 该窗体主要包含了以下 ...
- 高并发下的Node.js与负载均衡
新兴的Node.js已经吸引了很多开发人员的眼光,它提供给我们一个快速构建高性能的网络应用的平台.我也开始逐步投入node.js的怀抱,在学习和使用的过程中,遇到了一些问题,也有一些经验,我觉得有必要 ...
- THINKPHP nginx设置路由为PATHINFO模式
首先THINKPHP配置文件中设置 //url访问模式为rewrite模式 'URL_MODEL'=>'2', 然后再在nginx.conf文件中,找到这一条语句 #access_log log ...