7-12(图) 社交网络图中结点的“重要性”计算 (30 分)

在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来。他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互作用,可以增强也可以减弱。而结点根据其所处的位置不同,其在网络中体现的重要性也不尽相同。

“紧密度中心性”是用来衡量一个结点到达其它结点的“快慢”的指标,即一个有较高中心性的结点比有较低中心性的结点能够更快地(平均意义下)到达网络中的其它结点,因而在该网络的传播过程中有更重要的价值。在有N个结点的网络中,结点v​i​​的“紧密度中心性”Cc(v​i​​)数学上定义为v​i​​到其余所有结点v​j​​ (j≠i) 的最短距离d(v​i​​,v​j​​)的平均值的倒数:

对于非连通图,所有结点的紧密度中心性都是0。

给定一个无权的无向图以及其中的一组结点,计算这组结点中每个结点的紧密度中心性。

输入格式:

输入第一行给出两个正整数N和M,其中N(≤10​4​​)是图中结点个数,顺便假设结点从1到N编号;M(≤10​5​​)是边的条数。随后的M行中,每行给出一条边的信息,即该边连接的两个结点编号,中间用空格分隔。最后一行给出需要计算紧密度中心性的这组结点的个数K(≤100)以及K个结点编号,用空格分隔。

输出格式:

按照Cc(i)=x.xx的格式输出K个给定结点的紧密度中心性,每个输出占一行,结果保留到小数点后2位。

输入样例:

9 14
1 2
1 3
1 4
2 3
3 4
4 5
4 6
5 6
5 7
5 8
6 7
6 8
7 8
7 9
3 3 4 9

输出样例:

Cc(3)=0.47
Cc(4)=0.62
Cc(9)=0.35

思路:简单的稀疏图最短路问题,甚至不需要保存边权(均为一),dijkstra算法裸过,读入的时候判一下是不是连通图

AC代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <cstdio>
#include <malloc.h> #define INF 0x3f3f3f3f
#define FRER() freopen("in.txt", "r", stdin)
#define FREW() freopen("out.txt", "w", stdout) using namespace std; const int maxn = + ; vector<int> g[maxn]; int n, m, s, u, v, vis[maxn], dis[maxn]; typedef pair<int, int> P; void dijkstra() {
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
priority_queue<P, vector<P>, greater<P> > q;
dis[s] = ;
q.push(make_pair(, s));
P tmp;
while(!q.empty()) {
tmp = q.top(); q.pop();
if(vis[tmp.second]) continue;
vis[tmp.second] = ;
for(int i = ; i < g[tmp.second].size(); ++i) {
if(tmp.first + < dis[g[tmp.second][i]]) {
dis[g[tmp.second][i]] = tmp.first + ;
q.push(make_pair(dis[g[tmp.second][i]], g[tmp.second][i]));
}
}
}
} double cal() {
double ans = ;
for(int i = ; i <= n; ++i)
ans += (double)dis[i];
return (n - ) / ans;
} int main()
{
scanf("%d %d", &n, &m);
int num = ;
while(m--) {
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
if(!vis[u]) vis[u] = , ++num;
if(!vis[v]) vis[v] = , ++num;
} bool ok = !(num == n);
scanf("%d", &m);
while(m--) {
scanf("%d", &s);
if(ok) printf("Cc(%d)=0.00\n", s);
else {
dijkstra();
printf("Cc(%d)=%.2lf\n", s, cal());
}
}
return ;
}
 

PTA 7-12(图) 社交网络图中结点的“重要性”计算 最短路的更多相关文章

  1. PTA 社交网络图中结点的“重要性”计算(30 分)

    7-12 社交网络图中结点的“重要性”计算(30 分) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互 ...

  2. PTA数据结构与算法题目集(中文) 7-36 社交网络图中结点的“重要性”计算 (30 分)

    PTA数据结构与算法题目集(中文)  7-36 社交网络图中结点的“重要性”计算 (30 分) 7-36 社交网络图中结点的“重要性”计算 (30 分)   在社交网络中,个人或单位(结点)之间通过某 ...

  3. 7-10 社交网络图中结点的“重要性”计算(30 point(s)) 【并查集+BFS】

    7-10 社交网络图中结点的"重要性"计算(30 point(s)) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络 ...

  4. 社交网络图中结点的“重要性”计算 (30 分) C++解法

    社交网络图中结点的"重要性"计算 (30 分) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓 ...

  5. 7-11 社交网络图中结点的“重要性”计算 (30 分)(Dijkstra算法)

    题意:  思路:对每个输入的点跑一遍dijkstra算法,然后对这个点到所有点的距离求和按公式输出就可以了. (这次尝试了用数组模拟链表来做最短路问题,刷新了自己对最短路的理解) 这里构造链表的过程我 ...

  6. dgraph解决社交关系中的正反向查找

    dgraph解决社交关系中的正反向查找 本篇介绍的是, 社交关系中的关注者与被关注者在dgraph中如何实现查找. 对dgraph的基本操作不太清楚的可以看看我之前写的博客 dgraph实现基本操作 ...

  7. 全世界最详细的图形化VMware中linux环境下oracle安装(二)【weber出品必属精品】

    <ORACLE 10.2.05版本的升级补丁安装> 首先我们解压 $ unzip p8202632_10205_LINUX.zip 解压后我们会发现多出了个文件夹,他是:Disk1,进入D ...

  8. 全世界最详细的图形化VMware中linux环境下oracle安装(一)【weber出品必属精品】

    安装流程:前期准备工作--->安装ORACLE软件--->安装升级补丁--->安装odbc创建数据库--->安装监听器--->安装EM <前期准备工作> 安装 ...

  9. 【转】一张图解析FastAdmin中的表格列表的功能

     一张图解析FastAdmin中的表格列表的功能 功能描述请根据图片上的数字索引查看对应功能说明. 1.时间筛选器如果想在搜索栏使用时间区间进行搜索,则可以在JS中修改修改字段属性,如 {field: ...

随机推荐

  1. 微信小程序电商实战-商品列表流式布局

    今天给大家分享一下微信小程序中商品列表的流式布局方式,根据文章内容操作就可以看到效果哦~~~ 流式布局概念 流式布局也叫百分比布局 把元素的宽,高,margin,padding不再用固定数值,改用百分 ...

  2. vue-router配置

    首先在App.vue中 1.使用router-link组件来导航,通过‘to'属性指定链接,<router-link> 默认会被渲染成一个 `<a>` 标签 <route ...

  3. Android开发从系统图库中选择一张图片的方法

    刚开始学习OpenCv4Android编程,做了个小demo. 就是一个主界面上添加一个ImageView 两个Button控件. 一个Button用来从系统相册选择一张照片: 另一个Button是用 ...

  4. jquery-ui sortable 排序

      https://blog.csdn.net/u013066244/article/details/51954198 <link ref="stylesheet" href ...

  5. hibernate_HelloWorld

    环境准备 1.下载 hibernate 3.3.2: 2.下载 hibernate 3.4.0: 3.注意阅读 hibernate compatibility matrix(hibernate 网站, ...

  6. Description Resource Path Location Type Java compiler level does not match the version of the installed Java project facet Unknown Faceted Project Problem (Java Version Mismatch)

    project 编译问题,需要三处的jdk版本要保持一致,才能编译通过. 1.在项目上右键properties->project Facets->修改右侧的version  保持一致 2. ...

  7. centos6.5_64bit-Tomcat7安装部署

    此次安装系统版本及软件版本 centos6.5-64bit java -1.7.0_45 jdk1.8.0_111 apache-tomcat-7.0.73   一.检查java版本信息        ...

  8. HCNA配置ssh远程登陆

    1.拓扑图 最终实现通过AR1 来SSH登陆到AR2 上 2.配置AR2为开启SSH服务 Please press enter to start cmd line! ############## &l ...

  9. Python输入与循环

    python while循环 while 语句: 执行语句 结束条件 #应用while输出1到11 counts = 1 while True: print("counts:", ...

  10. mysql在控制台里出现中文问号问题

    由于重装了wampserver,之前遇到的问题统统会重新出现,那么今天遇到的是在mysql控制台中,在表里输入中文数据,却出现问号的问题: 那么这个就跟编码有关系了,那么,我们就去wampserver ...