Linux下C程序进程地址空间布局[转]
我们在学习C程序开发时经常会遇到一些概念:代码段、数据段、BSS段(Block Started by Symbol) 、堆(heap)和栈(stack)。先看一张教材上的示意图(来源,《UNIX环境高级编程》一书),显示了进程地址空间中典型的存储区域分配情况。
从图中可以看出:
- 从低地址到高地址分别为:代码段、(初始化)数据段、(未初始化)数据段(BSS)、堆、栈、命令行参数和环境变量
- 堆向高内存地址生长
- 栈向低内存地址生长
还经常看到下面这个图(来源,不详):
先看一段程序。
- #include <stdio.h>
- #include <stdlib.h>
- int global_init_a=1;
- int global_uninit_a;
- static int static_global_init_a=1;
- static int static_global_uninit_a;
- const int const_global_a=1;
- int global_init_b=1;
- int global_uninit_b;
- static int static_global_init_b=1;
- static int static_global_uninit_b;
- const int const_global_b=1;
- /*上面全部为全局变量,main函数中的为局部变量*/
- int main()
- {
- int local_init_a=1;
- int local_uninit_a;
- static int static_local_init_a=1;
- static int static_local_uninit_a;
- const int const_local_a=1;
- int local_init_b=1;
- int local_uninit_b;
- static int static_local_init_b=1;
- static int static_local_uninit_b;
- const int const_local_b=1;
- int * malloc_p_a;
- malloc_p_a=malloc(sizeof(int));
- printf("\n &global_init_a=%p \t
- global_init_a=%d\n",&global_init_a,global_init_a);
- printf(" &global_uninit_a=%p \t
- global_uninit_a=%d\n",&global_uninit_a,global_uninit_a);
- printf(" &static_global_init_a=%p \t
- static_global_init_a=%d\n",&static_global_init_a,static_global_init_a);
- printf("&static_global_uninit_a=%p \t
- static_global_uninit_a=%d\n",&static_global_uninit_a,static_global_uninit_a);
- printf(" &const_global_a=%p \t
- const_global_a=%d\n",&const_global_a,const_global_a);
- printf("\n &global_init_b=%p \t
- global_init_b=%d\n",&global_init_b,global_init_b);
- printf(" &global_uninit_b=%p \t
- global_uninit_b=%d\n",&global_uninit_b,global_uninit_b);
- printf(" &static_global_init_b=%p \t
- static_global_init_b=%d\n",&static_global_init_b,static_global_init_b);
- printf("&static_global_uninit_b=%p \t
- static_global_uninit_b=%d\n",&static_global_uninit_b,static_global_uninit_b);
- printf(" &const_global_b=%p \t
- const_global_b=%d\n",&const_global_b,const_global_b);
- printf("\n &local_init_a=%p \t
- local_init_a=%d\n",&local_init_a,local_init_a);
- printf(" &local_uninit_a=%p \t
- local_uninit_a=%d\n",&local_uninit_a,local_uninit_a);
- printf(" &static_local_init_a=%p \t
- static_local_init_a=%d\n",&static_local_init_a,static_local_init_a);
- printf(" &static_local_uninit_a=%p \t
- static_local_uninit_a=%d\n",&static_local_uninit_a,static_local_uninit_a);
- printf(" &const_local_a=%p \t
- const_local_a=%d\n",&const_local_a,const_local_a);
- printf("\n &local_init_b=%p \t
- local_init_b=%d\n",&local_init_b,local_init_b);
- printf(" &local_uninit_b=%p \t
- local_uninit_b=%d\n",&local_uninit_b,local_uninit_b);
- printf(" &static_local_init_b=%p \t
- static_local_init_b=%d\n",&static_local_init_b,static_local_init_b);
- printf(" &static_local_uninit_b=%p \t
- static_local_uninit_b=%d\n",&static_local_uninit_b,static_local_uninit_b);
- printf(" &const_local_b=%p \t
- const_local_b=%d\n",&const_local_b,const_local_b);
- printf(" malloc_p_a=%p \t
- *malloc_p_a=%d\n",malloc_p_a,*malloc_p_a);
- return 0;
- }
下面是输出结果。
先仔细分析一下上面的输出结果,看看能得出什么结论。貌似很难分析出来什么结果。好了我们继续往下看吧。
接下来,通过查看proc文件系统下的文件,看一下这个进程的真实内存分配情况。(我们需要在程序结束前加一个死循环,不让进程结束,以便我们进一步分析)。
在return 0前,增加 while(1); 语句
重新编译后,运行程序,程序将进入死循环。
使用ps命令查看一下进程的pid
#ps -aux | grep a.out
查看/proc/2699/maps文件,这个文件显示了进程在内存空间中各个区域的分配情况。
#cat /proc/2699/maps
上面红颜色标出的几个区间是我们感兴趣的区间:
- 08048000-08049000 r-xp 貌似是代码段
- 08049000-0804a000 r--p 暂时不清楚,看不出来
- 0804a000-0804b000 rw-p 貌似为数据段
- 08a7e000-08a9f000 rw-p 堆
- bff73000-bff88000 rw-p 栈
我们把这些数据与最后一次的程序运行结果进行比较,看看有什么结论。
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&global_uninit_a=0x804a04c 全局未初始化:数据段 global_uninit_a=0
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&static_global_uninit_a=0x804a038 全局静态未初始化:数据段 static_global_uninit_a=0
&const_global_a=0x80487c0 全局只读变量: 代码段 const_global_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&global_uninit_b=0x804a048 全局未初始化:数据段 global_uninit_b=0
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_global_uninit_b=0x804a03c 全局静态未初始化:数据段 static_global_uninit_b=0
&const_global_b=0x80487c4 全局只读变量: 代码段 const_global_b=1
&local_init_a=0xbff8600c 局部初始化:栈 local_init_a=1
&local_uninit_a=0xbff86008 局部未初始化:栈 local_uninit_a=134514459
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_uninit_a=0x804a040 局部静态未初始化:数据段 static_local_uninit_a=0
&const_local_a=0xbff86004 局部只读变量:栈 const_local_a=1
&local_init_b=0xbff86000 局部初始化:栈 local_init_b=1
&local_uninit_b=0xbff85ffc 局部未初始化:栈 local_uninit_b=-1074241512
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_local_uninit_b=0x804a044 局部静态未初始化:数据段 static_local_uninit_b=0
&const_local_b=0xbff85ff8 局部只读变量:栈 const_local_b=1
p_chars=0x80487c8 字符串常量:代码段 p_chars=abcdef
malloc_p_a=0x8a7e008 malloc动态分配:堆 *malloc_p_a=0
通过以上分析我们暂时可以得到的结论如下,在进程的地址空间中:
- 数据段中存放:全局变量(初始化以及未初始化的)、静态变量(全局的和局部的、初始化的以及未初始化的)
- 代码段中存放:全局只读变量(const)、字符串常量
- 堆中存放:动态分配的区域
- 栈中存放:局部变量(初始化以及未初始化的,但不包含静态变量)、局部只读变量(const)
这里我们没有发现BSS段,但是我们将未初始化的数据按照地址进行排序看一下,可以发现一个规律。
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_global_uninit_a=0x804a038 全局静态未初始化:数据段 static_global_uninit_a=0
&static_global_uninit_b=0x804a03c 全局静态未初始化:数据段 static_global_uninit_b=0
&static_local_uninit_a=0x804a040 局部静态未初始化:数据段 static_local_uninit_a=0
&static_local_uninit_b=0x804a044 局部静态未初始化:数据段 static_local_uninit_b=0
&global_uninit_b=0x804a048 全局未初始化:数据段 global_uninit_b=0
&global_uninit_a=0x804a04c 全局未初始化:数据段 global_uninit_a=0
这里可以发现,初始化的和未初始化的数据好像是分开存放的,因此我们可以猜测BSS段是存在的,只不过数据段是分为初始化和未初始化(即BSS段)的两部分,他们在加载到进程地址空间时是合并为数据段了,在进程地址空间中没有单独分为一个区域。
还有一个问题,静态数据与非静态数据是否是分开存放的呢?请读者自行分析一下。
接下来我们从程序的角度看一下,这些存储区域是如何分配的。首先我们先介绍一下ELF文件格式。
一个程序编译生成目标代码文件(ELF文件)的过程如下,此图引自《程序员的自我修养》一书的一个图:
可以通过readelf命令查看EFL文件的相关信息,例如 readelf -a a.out ,我们只关心各个段的分配情况,因此我们使用以下命令:
将这里的内存布局与之前看到的程序的运行结果进行分析:
&global_init_a=0x804a018 全局初始化:数据段 global_init_a=1
&global_uninit_a=0x804a04c 全局未初始化:BSS段 global_uninit_a=0
&static_global_init_a=0x804a01c 全局静态初始化:数据段 static_global_init_a=1
&static_global_uninit_a=0x804a038 全局静态未初始化:BSS段 static_global_uninit_a=0
&const_global_a=0x80487c0 全局只读变量: 只读数据段 const_global_a=1
&global_init_b=0x804a020 全局初始化:数据段 global_init_b=1
&global_uninit_b=0x804a048 全局未初始化:BSS段 global_uninit_b=0
&static_global_init_b=0x804a024 全局静态初始化:数据段 static_global_init_b=1
&static_global_uninit_b=0x804a03c 全局静态未初始化:BSS段 static_global_uninit_b=0
&const_global_b=0x80487c4 全局只读变量: 只读数据段 const_global_b=1
&static_local_init_a=0x804a028 局部静态初始化:数据段 static_local_init_a=1
&static_local_uninit_a=0x804a040 局部静态未初始化:BSS段 static_local_uninit_a=0
&static_local_init_b=0x804a02c 局部静态初始化:数据段 static_local_init_b=1
&static_local_uninit_b=0x804a044 局部静态未初始化:BSS段 static_local_uninit_b=0
p_chars=0x80487c8 字符串常量:只读数据段 p_chars=abcdef
ELF 文件一般包含以下几个段 :
- .text section:主要是编译后的源码指令,是只读字段。
- .data section :初始化后的非const的全局变量、局部static变量。
- .bss:未初始化后的非const全局变量、局部static变量。
- .rodata字段 是存放只读数据
分析到这以后,我们在和之前分析的结果对比一下,会发现确实存在BSS段,地址为0804a030 ,大小为0x20,之前我们的程序中未初始化的的确存放在这个地址区间中了,只不过执行exec系统调用时,将这部分的数据初始化为0后,放到了进程地址空间的数据段中了,在进程地址空间中就没有必要存在BSS段了,因此都称做数据段。同理,.rodata字段也是与text段放在一起了。
在ELF文件中,找不到局部非静态变量和动态分配的内容。
以上有很多地方的分析,我在网上基本找不到很明确的结论,很多教材上也没有描述,只是我通过程序分析得出的结论,如有不妥之处,请指出,欢迎交流。
作者:沧海猎人 出处:http://blog.csdn.net/embedded_hunter 转载请注明出处 嵌入式技术交流QQ群:179012822
Linux下C程序进程地址空间布局[转]的更多相关文章
- Linux下C程序的存储空间布局
一个程序本质上都是由 BSS 段.data段.text段三个组成的.可以看到一个可执行程序在存储(没有调入内存)时分为代码段.数据区和未初始化数据区三部分. BSS段(未初始化数据区):在采用段式内存 ...
- Linux下查看某个进程打开的文件数-losf工具常用参数介绍
Linux下查看某个进程打开的文件数-losf工具常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在linux操作系统中,一切皆文件.通过文件不仅仅可以访问常规数据,还 ...
- Linux下逻辑地址、线性地址、物理地址详细总结
Linux下逻辑地址.线性地址.物理地址详细总结 一.逻辑地址转线性地址 机器语言指令中出现的内存地址,都是逻辑地址,需要转换成线性地址,再经过MMU(CPU中的内存管理单元)转换成物理地址 ...
- linux下实现监控进程网络带宽
嗯,近期都在网易游戏实习,所以貌似有段时间没有上来写点东西了... 来网易游戏实习最基本的目的事实上就是想知道在游戏公司里面工作都是些什么内容,毕竟自己曾经也没有接触过游戏公司.. 还比較的好奇.. ...
- [转帖]Linux下逻辑地址、线性地址、物理地址详细总结
Linux下逻辑地址.线性地址.物理地址详细总结 https://www.cnblogs.com/alantu2018/p/9002441.html 总结的挺好的 现在应该是段页式管理 使用MMU和T ...
- Linux下C程序的内存映像
2.Linux下C程序的内存映像 2.1. 代码段.只读数据段(1)对应着程序中的代码(函数),代码段在Linux中又叫文本段(.text)(2)只读数据段就是在程序运行期间只能读不能写的数据,con ...
- Linux下C程序的编辑,编译和运行以及调试
国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html 内部邀请码:C8E245J (不写邀请码,没有现金送) 国 ...
- 解决linux下tomcat停止进程任存在问题
解决linux下tomcat停止进程任存在问题 在Linux下(之所以强调linux下,是因为在windows下正常),执行tomcat ./shutdown.sh 后,虽然tomcat服务不能正常访 ...
- Linux下C程序内存泄露检测
在linux下些C语言程序,最大的问题就是没有一个好的编程IDE,当然想kdevelop等工具都相当的强大,但我还是习惯使用kdevelop工具,由于没有一个习惯的编程IDE,内存检测也就成了在lin ...
随机推荐
- java课后思考题(三)
1.以下代码为何无法通过编译?哪儿出错了? 因为在Foo类中已经有了一个Foo类的有参构造函数,所以Foo类中已经不默认Foo()的无参构造函数,所以在new Foo()时无法调用构造函数.所以在无法 ...
- java——保存书店每日交易记录程序设计
Books.java: 这个文件定义了一个Books类. 规定Books类拥有的属性:int id, String name, String publish, double price, int nu ...
- APP测试总结2
一.App测试流程与web项目流程区别 1.对UI要求比较高,需要更加注重用户体验.对于一个小小的屏幕,如何让用户使用更加轻便.简介.易用. 2.App是调用服务端接口展示数据.我们测试需要可以判断问 ...
- formValidation校验
引用: https://www.cnblogs.com/aliger/p/3898216.html
- prototype.js
(1)$() 方法是在DOM中使用过于频繁的 document.getElementById() 方法的一个便利的简写, 就像这个DOM方法一样,这个方法返回参数传入的id的那个元素. (2)
- [转]ASP.NET中JSON的序列化和反序列化
本文转自:http://www.cnblogs.com/zhaozhan/archive/2011/01/09/1931340.html JSON是专门为浏览器中的网页上运行的JavaScript代码 ...
- (转)CentOS下的trap命令
trap命令用于指定在接收到信号后将要采取的动作.常见的用途是在脚本程序被中断时完成清理工作.不过,这次我遇到它,是因为客户有个需求:从终端访问服务器的用户,其登陆服务器后会自动运行某个命令,例如打开 ...
- 介绍几个关于C/C++程序调试的函数
最近调试程序学到的几个挺有用的函数,分享一下,希望对用C/C++的朋友有所帮助! 1. 调用栈系列下面是函数原型: 1 2 3 4 #include "execinfo .h" i ...
- C# 十进制与二进制、十六进制、八进制之间的转换
1.十进制 转 二进制 将十进制数不断地除2,将所有余数倒叙填写,即可得到所需二进制数据. public static string DecimalToBinary(int vDecimal) { / ...
- 设置checkbox只读
1.checkbox没有readonly属性,所以在checkbox添加readonly属性是没有作用的. <input type="checkbox" readonly=& ...