BZOJ4653: [Noi2016]区间(线段树 双指针)
题意
Sol
按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案。但是对于此题来说好像不好搞
另一种思路是枚举最小的区间长度是多少,这样我们把所有区间按长度排序后可以二分出满足条件的最短的区间长度
观察后不难发现,较长区间的长度一定是随着短区间长度的增加而单调递增的。
直接用双指针维护即可。
判断是否可行也就是是否有一个点被覆盖了\(m\)次,离散化后线段树维护。。
经验:
- 该类问题的两种思路
- 最大值的单调性
#include<bits/stdc++.h>
#define ls k << 1
#define rs k << 1 | 1
using namespace std;
const int MAXN = 4e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
struct Node {
int l, r, mx, f, siz;
}T[MAXN];
struct Line {
int l, r;
bool operator < (const Line &rhs) const {
return abs(r - l) <= abs(rhs.r - rhs.l);
}
}a[MAXN];
int date[MAXN], num;
void add(int k, int val) {
T[k].mx += val;
T[k].f += val;
}
void pushdown(int k) {
if(!T[k].f) return ;
add(ls, T[k].f); add(rs, T[k].f);
T[k].f = 0;
}
void update(int k) {
T[k].mx = max(T[ls].mx, T[rs].mx);
}
void Build(int k, int ll, int rr) {
T[k].l = ll; T[k].r = rr;
if(ll == rr) return ;
int mid = ll + rr >> 1;
Build(ls, ll ,mid); Build(rs, mid + 1, rr);
}
void Add(int k, int ll, int rr, int val) {
if(ll <= T[k].l && T[k].r <= rr) {add(k, val); return ;}
pushdown(k);
int mid = T[k].l + T[k].r >> 1;
if(ll <= mid) Add(ls, ll, rr, val);
if(rr > mid) Add(rs, ll, rr, val);
update(k);
}
main() {
// freopen("testdata.in", "r", stdin);
N = read(); M = read();
for(int i = 1; i <= N; i++)
a[i].l = read(), a[i].r = read(), date[++num] = a[i].l, date[++num] = a[i].r;
// puts("-1");
//sort(a + 1, a + N + 1);
stable_sort(a + 1, a + N + 1);
// puts("-1");
sort(date + 1, date + num + 1);
num = unique(date + 1, date + num + 1) - date - 1;
for(int i = 1; i <= N; i++) a[i].l = lower_bound(date + 1, date + num + 1, a[i].l) - date,
a[i].r = lower_bound(date + 1, date + num + 1, a[i].r) - date;
Build(1, 1, num);
int ans = INF, now = 0;
for(int i = 1; i <= N; i++) {
while(T[1].mx < M && (now < N))
now++, Add(1, a[now].l, a[now].r, 1);
if(T[1].mx >= M) ans = min(ans, date[a[now].r] - date[a[now].l] - ( date[a[i].r] - date[a[i].l]));
Add(1, a[i].l, a[i].r, -1);
}
printf("%d\n", ans == INF ? -1 : ans);
}
/*
*/
BZOJ4653: [Noi2016]区间(线段树 双指针)的更多相关文章
- BZOJ4653 [NOI2016]区间 [线段树,离散化]
题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...
- BZOJ4653:[NOI2016]区间(线段树)
Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...
- 【BZOJ-4653】区间 线段树 + 排序 + 离散化
4653: [Noi2016]区间 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 107 Solved: 70[Submit][Status][Di ...
- [NOI2016]区间 线段树
[NOI2016]区间 LG传送门 考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的 ...
- BZOJ.4653.[NOI2016]区间(线段树)
BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...
- Luogu P1712 [NOI2016]区间(线段树)
P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...
- UOJ222 NOI2016 区间 线段树+FIFO队列
首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...
- 洛谷$P1712\ [NOI2016]$区间 线段树
正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...
- hdu 1540 Tunnel Warfare (区间线段树(模板))
http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- Linux文件属性用户、组、权限
Linux系统中的用户是分角色的,用户的角色是由UID和GID来识别的(也就是说系统识别的是用户的UID.GID,而非用户用户名),有个UID是唯一的(系统中唯一如同身份证一样)用来标识系统的用户账号 ...
- 7、OpenCV Python 高斯模糊
__author__ = "WSX" import cv2 as cv import numpy as np #高斯模糊 基于权重(卷积) #高斯模糊 去燥效果很好 #高斯模糊 d ...
- P4799 [CEOI2015 Day2]世界冰球锦标赛
\(\color{#0066ff}{题目描述}\) 今年的世界冰球锦标赛在捷克举行.Bobek 已经抵达布拉格,他不是任何团队的粉丝,也没有时间观念.他只是单纯的想去看几场比赛.如果他有足够的钱,他会 ...
- s5pv210移植Minigui3.0.12
移植平台:ubuntu:14.04 开发板:s5pv210(A8) Minigui版本:3.0.12-------------------------------------------------- ...
- [国家集训队]happiness 最小割 BZOJ 2127
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- 详解linux下批量替换文件内容的三种方法(perl,sed,shell)
在建设本网站的时候,发现新建了很多的网页,突然发现,每个文件都需要进行修改一样的内容,一个一个打开很是麻烦,所以,总结了一下如何快速修改一个目录下多个文件进行内容替换.第三种方法用的不多 方法一 使用 ...
- 黑马集合学习 自定义ArrayList01
package demo; import java.util.Arrays; public class MyArrayList<T> { Object[] t; int size; pri ...
- springcloud系列三 搭建服务模块
搭建服务模块为了模拟正式开发环境,只是少写了service层直接在controller里面直接引用,直接上图和代码:更为方便: 创建完成之后加入配置: pom.xml文件: <?xml vers ...
- CROSS APPLY和 OUTER APPLY 区别详解
SQL Server 2005 新增 cross apply 和 outer apply 联接语句,增加这两个东东有啥作用呢? 我们知道有个 SQL Server 2000 中有个 cross joi ...
- mysql——索引失效
索引失效的几种情况:https://www.jianshu.com/p/9c9a0057221f