BZOJ4653: [Noi2016]区间(线段树 双指针)
题意
Sol
按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案。但是对于此题来说好像不好搞
另一种思路是枚举最小的区间长度是多少,这样我们把所有区间按长度排序后可以二分出满足条件的最短的区间长度
观察后不难发现,较长区间的长度一定是随着短区间长度的增加而单调递增的。
直接用双指针维护即可。
判断是否可行也就是是否有一个点被覆盖了\(m\)次,离散化后线段树维护。。
经验:
- 该类问题的两种思路
- 最大值的单调性
#include<bits/stdc++.h>
#define ls k << 1
#define rs k << 1 | 1
using namespace std;
const int MAXN = 4e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
struct Node {
int l, r, mx, f, siz;
}T[MAXN];
struct Line {
int l, r;
bool operator < (const Line &rhs) const {
return abs(r - l) <= abs(rhs.r - rhs.l);
}
}a[MAXN];
int date[MAXN], num;
void add(int k, int val) {
T[k].mx += val;
T[k].f += val;
}
void pushdown(int k) {
if(!T[k].f) return ;
add(ls, T[k].f); add(rs, T[k].f);
T[k].f = 0;
}
void update(int k) {
T[k].mx = max(T[ls].mx, T[rs].mx);
}
void Build(int k, int ll, int rr) {
T[k].l = ll; T[k].r = rr;
if(ll == rr) return ;
int mid = ll + rr >> 1;
Build(ls, ll ,mid); Build(rs, mid + 1, rr);
}
void Add(int k, int ll, int rr, int val) {
if(ll <= T[k].l && T[k].r <= rr) {add(k, val); return ;}
pushdown(k);
int mid = T[k].l + T[k].r >> 1;
if(ll <= mid) Add(ls, ll, rr, val);
if(rr > mid) Add(rs, ll, rr, val);
update(k);
}
main() {
// freopen("testdata.in", "r", stdin);
N = read(); M = read();
for(int i = 1; i <= N; i++)
a[i].l = read(), a[i].r = read(), date[++num] = a[i].l, date[++num] = a[i].r;
// puts("-1");
//sort(a + 1, a + N + 1);
stable_sort(a + 1, a + N + 1);
// puts("-1");
sort(date + 1, date + num + 1);
num = unique(date + 1, date + num + 1) - date - 1;
for(int i = 1; i <= N; i++) a[i].l = lower_bound(date + 1, date + num + 1, a[i].l) - date,
a[i].r = lower_bound(date + 1, date + num + 1, a[i].r) - date;
Build(1, 1, num);
int ans = INF, now = 0;
for(int i = 1; i <= N; i++) {
while(T[1].mx < M && (now < N))
now++, Add(1, a[now].l, a[now].r, 1);
if(T[1].mx >= M) ans = min(ans, date[a[now].r] - date[a[now].l] - ( date[a[i].r] - date[a[i].l]));
Add(1, a[i].l, a[i].r, -1);
}
printf("%d\n", ans == INF ? -1 : ans);
}
/*
*/
BZOJ4653: [Noi2016]区间(线段树 双指针)的更多相关文章
- BZOJ4653 [NOI2016]区间 [线段树,离散化]
题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...
- BZOJ4653:[NOI2016]区间(线段树)
Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...
- 【BZOJ-4653】区间 线段树 + 排序 + 离散化
4653: [Noi2016]区间 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 107 Solved: 70[Submit][Status][Di ...
- [NOI2016]区间 线段树
[NOI2016]区间 LG传送门 考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的 ...
- BZOJ.4653.[NOI2016]区间(线段树)
BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...
- Luogu P1712 [NOI2016]区间(线段树)
P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...
- UOJ222 NOI2016 区间 线段树+FIFO队列
首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...
- 洛谷$P1712\ [NOI2016]$区间 线段树
正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...
- hdu 1540 Tunnel Warfare (区间线段树(模板))
http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国
SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...
- kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)
Treats for the Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7949 Accepted: 42 ...
- Geometry - DbGeometry的使用说明一
说明:工作中使用过但是没有详细的研究过,使用c#语言进行逻辑处理.分享出来希望各位发表意见 geometry是arcgis的空间对象 dbgeometry是微软的空间对象 geometry对象转换为d ...
- java中Runtime类和Process类的简单介绍
在java.lang包当中定义了一个Runtime类,在java中对于Runtime类的定义如下: Java code public class Runtime extends Object 每个 J ...
- 剧本--ansible
剧本不喜欢, 1.1 编写剧本规范:(PYyaml语法格式文件) 剧本中有层级划分 每个层级都要用两个空格进行区分 第一级标题 第二级标题 第三级标题 强调注意:一定使用ansible软件配置剧本时, ...
- 基于spring boot 和MDC实现 同一笔记录的日志跟踪实现--1.filter
同一个项目中,一般包含controller/servlet.service.dao等.1笔记录的日志贯穿于controller.service.dao中,在并发情况下,那如何找出该笔日志? 可通过以下 ...
- python发送微信
申请企业微信 使用python发送信息到企业微信,同时支持python2与python3环境,需要先申请一个企业微信,然后创建应用,获取以下三个信息 企业IP.Agentid.Secret 网信为创建 ...
- 安装 Office project 2013 时提示找不到 Office.zh-cn\OfficeLR.cab
昨天在安装project 时总是弹出下图中的提示框,在网上搜索了很多办法但是没有解决这个问题. 后来进入到office.zh-cn的文件夹中,在officemui.msi文件中右键卸载,然后在重新安装 ...
- 性能测试工具LoadRunner14-LR之Controller 简介
当虚拟用户开发完成之后,使用Controller将这个执行脚本的用户从单用户转化为多用户,从而模拟大量用户操作,进而形成负载.(多用户单循环,多用户多循环)我们需要对负载模拟的方式和特征进行配置. 场 ...
- 对象池1(方法功能)PoolOption
2.对象池PoolOption(方法功能) //单类型缓冲对象管理(单模池操作管理)功能: 激活.收回.预加载等. namespace kernal { [System.Serializable] p ...