shuffle的过程分析

shuffle阶段其实就是之前《MapReduce的原理及执行过程》中的步骤2.1。多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。

Map端:

  1、在map端首先接触的是InputSplit,在InputSplit中含有DataNode中的数据,每一个InputSplit都会分配一个Mapper任务,Mapper任务结束后产生<K2,V2>的输出,这些输出先存放在缓存中,每个map有一个环形内存缓冲区,用于存储任务的输出。默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spil l.percent),一个后台线程就把内容写到(spill)Linux本地磁盘中的指定目录(mapred.local.dir)下的新建的一个溢出写文件。(注意:map过程的输出是写入本地磁盘而不是HDFS,但是一开始数据并不是直接写入磁盘而是缓冲在内存中,缓存的好处就是减少磁盘I/O的开销,提高合并和排序的速度。又因为默认的内存缓冲大小是100M(当然这个是可以配置的),所以在编写map函数的时候要尽量减少内存的使用,为shuffle过程预留更多的内存,因为该过程是最耗时的过程。)

  2、写磁盘前,要进行partition、sort和combine等操作。通过分区,将不同类型的数据分开处理,之后对不同分区的数据进行排序,如果有Combiner,还要对排序后的数据进行combine。等最后记录写完,将全部溢出文件合并为一个分区且排序的文件。(注意:在写磁盘的时候采用压缩的方式将map的输出结果进行压缩是一个减少网络开销很有效的方法!)

  3、最后将磁盘中的数据送到Reduce中,从图中可以看出Map输出有三个分区,有一个分区数据被送到图示的Reduce任务中,剩下的两个分区被送到其他Reducer任务中。而图示的Reducer任务的其他的三个输入则来自其他节点的Map输出。

Reduce端:

  1、Copy阶段:Reducer通过Http方式得到输出文件的分区。

  reduce端可能从n个map的结果中获取数据,而这些map的执行速度不尽相同,当其中一个map运行结束时,reduce就会从JobTracker中获取该信息。map运行结束后TaskTracker会得到消息,进而将消息汇报给  JobTracker,reduce定时从JobTracker获取该信息,reduce端默认有5个数据复制线程从map端复制数据。

  2、Merge阶段:如果形成多个磁盘文件会进行合并

  从map端复制来的数据首先写到reduce端的缓存中,同样缓存占用到达一定阈值后会将数据写到磁盘中,同样会进行partition、combine、排序等过程。如果形成了多个磁盘文件还会进行合并,最后一次合并的结果作为reduce的输入而不是写入到磁盘中。

  3、Reducer的参数:最后将合并后的结果作为输入传入Reduce任务中。(注意:当Reducer的输入文件确定后,整个Shuffle操作才最终结束。之后就是Reducer的执行了,最后Reducer会把结果存到HDFS上。)

shuffle的过程分析的更多相关文章

  1. MapReduce shuffle的过程分析

    shuffle阶段其实就是多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上. Map端: 1.在map端首先接触的是InputSplit,在InputSplit中含有D ...

  2. shuffle过程分析

    shuffle的过程分析 shuffle阶段其实就是之前<MapReduce的原理及执行过程>中的步骤2.1.多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点 ...

  3. MapReduce学习

    参考文章 参考文章2 shuffle的过程分析 Hadoop学习笔记:MapReduce框架详解 谈mapreduce运行机制,可以从很多不同的角度来描述,比如说从mapreduce运行流程来讲解,也 ...

  4. Spark Shuffle模块——Suffle Read过程分析

    在阅读本文之前.请先阅读Spark Sort Based Shuffle内存分析 Spark Shuffle Read调用栈例如以下: 1. org.apache.spark.rdd.Shuffled ...

  5. spark shuffle过程分析

    spark shuffle流程分析 回到ShuffleMapTask.runTask函数 如今回到ShuffleMapTask.runTask函数中: overridedef runTask(cont ...

  6. spark源码阅读--shuffle过程分析

    ShuffleManager(一) 本篇,我们来看一下spark内核中另一个重要的模块,Shuffle管理器ShuffleManager.shuffle可以说是分布式计算中最重要的一个概念了,数据的j ...

  7. Task的运行过程分析

    Task的运行过程分析 Task的运行通过Worker启动时生成的Executor实例进行, caseRegisteredExecutor(sparkProperties)=> logInfo( ...

  8. 《Hadoop技术内幕》读书笔记——Task运行过程分析

    本文是董西成的Hadoop技术内幕一书的读书章节总结. 第八章 Task运行过程分析 所有Task需要周期性地向TaskTracker汇报最新进度和计数器值,而这正是由Reporter组件实现的,其中 ...

  9. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

随机推荐

  1. 使用 Satis 搭建私有的 Composer 包仓库

    简述 iBrand 产品立项时是商业性质的项目,但是在搭建架构时考虑后续的通用性,因此每个模块都设计成一个 Package,作为公司内部用,因此这些包并不能提交到 packagist.org 上去. ...

  2. 0 - python简介

    Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言 ...

  3. PointCNN 论文翻译解析

    1. 前言 卷积神经网络在二维图像的应用已经较为成熟了,但 CNN 在三维空间上,尤其是点云这种无序集的应用现在研究得尤其少.山东大学近日公布的一项研究提出的 PointCNN 可以让 CNN 在点云 ...

  4. IOS 设置颜色的的详情

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  5. MySQL 开机自启动

    MySQL 开机自启动 chkconfig add mysqld 或者 echo "/usr/local/mysql/bin/mysqld_safe --defaults-file=/etc ...

  6. querystring处理参数小利器

    相信上一章的讲解,相信大家对url地址有一个更直观的认识,在url解析的时候可以用querystring这样一个module替换,然后对这个query集成一个对象,这里不管是前端开发还是后端开发,都常 ...

  7. CentOS 6\7修改主机名

    1.CentOS6修改主机名 1)临时修改主机名: 显示主机名: oracle@localhost:~$ hostname localhost 修改 oracle@localhost:~$ sudo ...

  8. 【洛谷P3952】[NOIP2017]时间复杂度

    时间复杂度 题目链接 对于 100%的数据:L≤100 . 很明显的模拟题 然而考试时还是爆炸了.. 调了一下午.. 蒟蒻表示不会离线操作.. 直接贴代码: #include<cstdio> ...

  9. Apache.Tomcat 调用Servlet原理之Class类的反射机制,用orc类解释

    有一个兽人类 package com.swift.servlet; public class OrcDemo { private int hp; private int mp; private int ...

  10. architecture x86_64(Error)

    undefined symbols for architecture x86_64 错误如下 因为提示文件非第三方文件,最初尝试使用以下方式处理 iOS :undefined symbols for ...