前言:\(Tarjan\)

割点割边建立在 \(Tarjan\)算法的基础之上,因此建议在看这篇博客之前先去学一学\(Tarjan\)

回顾\(Tarjan\)中各个数组的定义

首先,我们来回顾一下\(Tarjan\)中各个数组的定义:

\(dfn[\) \(]\):每个点的\(dfs\)序。

\(low[\) \(]\):每个点能到达的\(dfs\)序最小的节点的\(dfs\)序。

而其他数组在求割点和割边的过程中则不太必要了。

割点

首先,我们要了解一下割点的定义把这个点去掉之后,这个点所在的联通块就会被分成若干个联通块

既然这样,也就是说,只要这个节点某一个子节点所到达的节点的\(dfs\)序大于等于该节点的\(dfs\)序,即它的这个子节点无法到达\(dfs\)序小于该节点的节点,就说明它是一个割点了。

而对于一个联通块第一个访问的节点,则需特判,如果它在遍历完一个节点所能遍历到的所有节点,还能找到没有被遍历过的节点,就说明它是一个割点。

代码如下:

inline void Tarjan(int x,int lst)//Tarjan求割点
{
register int i,tot=0;//tot记录访问到的子节点个数
for(dfn[x]=low[x]=++d,i=lnk[x];i;i=e[i].nxt)//枚举每一个子节点
{
if(!(e[i].to^lst)) continue;//如果这个节点是当前节点的父亲节点,就跳过
if(!dfn[e[i].to])//如果这个子节点没有被访问过
{
Tarjan(e[i].to,x),low[x]=min(low[x],low[e[i].to]),++tot;//遍历该子节点,更新low[x],并将tot加1
if(lst&&low[e[i].to]>=dfn[x]) IsCut[x]=1;//如果当前节点不是一个联通块第一个访问的节点,且当前节点的这个子节点dfs序大于等于当前节点的dfs序,那么就说明当前节点是割点
}
else low[x]=min(low[x],dfn[e[i].to]);//更新low[x]
}
if(!lst&&tot>=2) IsCut[x]=1;//如果当前节点是联通块第一个节点,且访问到的子节点个数≥2,那么就说明当前节点是割点
}

割边

还是一样,先了解一下割边的定义把这条边去掉之后,这条边所在的联通块就会被分成若干个联通块,看起来与割点的定义很像。

因此,如果一条边所连接的两个节点,若其中\(dfs\)序较大的节点不经过这条边所能到达的\(dfs\)序最小的节点大于这条边连接的点中\(dfs\)序较小的节点,就说明这条边是一条割边。

不过还要注意判重的情况,要注意如果有两条相同的边,那么这两条边肯定都不是割边。

代码如下:

inline void Tarjan(int x,int lst)//Tarjan求割边
{
register int i,flag=1;//flag记录当前节点是否第一次访问它的父亲节点
for(dfn[x]=low[x]=++d,vis[Stack[++top]=x]=1,i=lnk[x];i;i=e[i].nxt)//枚举每一个子节点
{
if(flag&&!(e[i].to^lst)) {flag=0;continue;}//如果是第一次访问父亲节点,就将flag标记为0,并跳过这条边
if(!dfn[e[i].to])//如果这个子节点没有被访问过
{
Tarjan(e[i].to,x),low[x]=min(low[x],low[e[i].to]);//访问这个节点,并更新low[x]
if(low[e[i].to]>low[x]) IsBridge[i]=1;//如果这条边连向的另一个节点所能到达的dfs序最小的节点大于该节点的dfs序,就说明这条边是割边
}
else if(vis[e[i].to]) low[x]=min(low[x],dfn[e[i].to]);//否则,更新low[x]
}
}

Tarjan在图论中的应用(二)——用Tarjan来求割点与割边的更多相关文章

  1. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  2. tarjan求割点与割边

    tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...

  3. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  4. Tarjan在图论中的应用(一)——用Tarjan来实现强连通分量缩点

    前言 \(Tarjan\)是一个著名的将强连通分量缩点的算法. 大致思路 它的大致思路就是在图上每个联通块中任意选一个点开始进行\(Tarjan\)操作(依据:强连通分量中的点可以两两到达,因此从任意 ...

  5. Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT

    前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...

  6. hihoCoder 1183 连通性一·割边与割点(Tarjan求割点与割边)

    #1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...

  7. 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题

    作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...

  8. POJ 1144 Network(tarjan 求割点个数)

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17016   Accepted: 7635 Descript ...

  9. 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构

    相关知识:(来自百度百科)  LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...

随机推荐

  1. Dynamic Rankings(树状数组套权值线段树)

    Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[ ...

  2. Mysql-4-数据库的基本操作

    1.创建数据库 create database database_name; 例:create database aa; show create database aa;(查看database aa) ...

  3. Docker存储卷

    六.Docker 存储卷(volume) COW:写时复制 Bind mount volume:手动mount绑定的卷 # docker run --name centos-3 -it -v /dat ...

  4. Jmeter性能测试-----参数化方法CSVRead函数

    Jmeter里面参数化的方法有很多,大家可以结合自己的项目情况来使用哪种方式来调用测试 数据. 下面我给大家介绍下Jmeter里CSVRead函数来获取参数的方法: 我这里已去到直播间发表评论为例(这 ...

  5. 使用navicat把一个数据库的表导入到另外一个数据库

    第一步:右击数据库名,选择数据传输 第二步:全选要导的数据库表 第三步:选择目标中的数据库,然后开始就可以了

  6. 3、kvm配置vnc

    配置kvm通过vnc访问 virsh edit privi-server 添加如下配置: <graphics type='vnc' port='5901' autoport='no' liste ...

  7. 74th LeetCode Weekly Contest Valid Number of Matching Subsequences

    Given string S and a dictionary of words words, find the number of words[i] that is a subsequence of ...

  8. 15-----jQuery补充

    jquery除了咱们上面讲解的常用知识点之外,还有jquery 插件.jqueryUI知识点 jqueryUI 官网: https://jqueryui.com/ jqueryUI 中文网: http ...

  9. docker的卸载方法

    卸载: 1.查询docker安装过的包: yum list installed | grep docker 2.删除安装包: yum remove docker-ce.x86_64 ddocker-c ...

  10. 性能测试学习第十天_controller

    集合点设置 controller虚拟多个用户执行脚本启动步骤不一定同步,集合点在脚本的某处设置一个标记,当有虚拟用户运行到这个标记的时候,停下等待所有用户都达到这个标记,再一同进行下面的步骤.这样可以 ...