解题关键:

1、此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$

2、此题可用组合数学的思想考虑,总的步数一共有$n+m-2$步,在这所有的步数中,需要选择向下走的步数的位置,由此可得,答案的解为:$C_{n + m - 2}^{n - 1}$

此题即可转化为大组合数取模问题;

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll mod_pow(ll x,ll n,ll p){
ll res=;
while(n){
if(n&) res=res*x%p;
x=x*x%p;
n>>=;
}
return res;
}
ll comb(ll n,ll m,ll p){
if(n==m) return ;
if(n<m) return ;
if(m>n-m) m=n-m; ll tn=,tm=;
while(m){
tn=tn*n%p;
tm=tm*m%p;
n--,m--;
}
return (tn*mod_pow(tm,p-,p)+mod)%mod;
}
int main(){
int n,m;
cin>>n>>m;
ll ans=comb(n+m-,n-,mod);
cout<<ans<<endl;
return ;
}

如下为dp的解法

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int dp[][];
int main(){
int n,m;
cin>>n>>m;
for(int i=;i<=;i++){
dp[][i]=dp[i][]=;
}
for(int i=;i<=m;i++){
for(int j=;j<=n;j++){
dp[i][j]=(dp[i-][j]+dp[i][j-])%mod;
}
}
cout<<dp[m][n]<<endl;
}

[51nod1119]机器人走方格V2的更多相关文章

  1. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  2. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  3. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  4. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  7. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  8. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

  9. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

随机推荐

  1. [笔记]几个简单有用的PHP函数

    收藏几个简单的PHP函数,分别用于对象到数组转换.json到php数组转换功能.curl模拟POST以及根据链接获取内容.不直接使用json_decode()的原因是php json_decode() ...

  2. UVALive - 7427 the math 【二分匹配】

    题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  3. linux mint console-setup

    sudo dpkg-reconfigure console-setup after setup, setupcon

  4. 【转】RMQ-ST算法详解

    地址:http://blog.csdn.net/z287438743z/article/details/8132806 RMQ(Range Minimum/Maximum Query)问题就是求区间最 ...

  5. Spring Cloud之Zuul负载均衡

    Zuul网关默认是实现负载均衡的,不需要任何配置.默认开启ribbon效果的 可以启启动两个服务端口,访问下.

  6. 在cmd中将FAT32转换为NTFS分区的命令是什么?

    将FAT32转换为NTFS分区的命令是什么? ========================================== 在cmd命令行模式下输入: convert x: /fs:ntfs ...

  7. JSP分页1

    分页 1.什么分页? 第N页/共M页 首页 上一页 1 2 3 4 5 6 7 8 9 10 下一页 尾页 口 go 分页的优点:只查询一页,不用查询所有页! 2.分页数据 页面的数据都是由Servl ...

  8. hdu-5642 King's Order(数位dp)

    题目链接: King's Order Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Othe ...

  9. linux命令学习笔记(10):cat 命令

    cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示, 或者从标准输入读取内容并显示,它常与重定向符号配合使用. .命令格式: cat [选项] [文件] ...

  10. Android: 一个两点触控的案例

    下面是一个两点触控的案例代码: package com.zzj; import android.app.Activity; import android.os.Bundle; import andro ...