[51nod1119]机器人走方格V2
解题关键:
1、此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$
2、此题可用组合数学的思想考虑,总的步数一共有$n+m-2$步,在这所有的步数中,需要选择向下走的步数的位置,由此可得,答案的解为:$C_{n + m - 2}^{n - 1}$
此题即可转化为大组合数取模问题;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll mod_pow(ll x,ll n,ll p){
ll res=;
while(n){
if(n&) res=res*x%p;
x=x*x%p;
n>>=;
}
return res;
}
ll comb(ll n,ll m,ll p){
if(n==m) return ;
if(n<m) return ;
if(m>n-m) m=n-m; ll tn=,tm=;
while(m){
tn=tn*n%p;
tm=tm*m%p;
n--,m--;
}
return (tn*mod_pow(tm,p-,p)+mod)%mod;
}
int main(){
int n,m;
cin>>n>>m;
ll ans=comb(n+m-,n-,mod);
cout<<ans<<endl;
return ;
}
如下为dp的解法
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int dp[][];
int main(){
int n,m;
cin>>n>>m;
for(int i=;i<=;i++){
dp[][i]=dp[i][]=;
}
for(int i=;i<=m;i++){
for(int j=;j<=n;j++){
dp[i][j]=(dp[i-][j]+dp[i][j-])%mod;
}
}
cout<<dp[m][n]<<endl;
}
[51nod1119]机器人走方格V2的更多相关文章
- 51nod1119 机器人走方格 V2
终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...
- 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)
题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- 1119 机器人走方格 V2(组合)
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...
- 51nod 1119 机器人走方格 V2
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...
- 1119 机器人走方格 V2
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...
- 1119 机器人走方格 V2 (组合数学)
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开 ...
- 51nod_1119:机器人走方格 V2
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...
- 51nod 1119 机器人走方格 V2 【组合数学】
挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...
随机推荐
- 简介windows的环境变量
环境变量一般是指在操作系统中用来指定操作系统运行环境的一些参数,比如临时文件夹位置和系统文件夹位置等.这点有点类似于DOS时期的默认路径,当你运行某些程序时除了在当前文件夹中寻找外,还会到设置的默认路 ...
- RabbitMQ高级应用
高级应用一: 手动模式和自动应答模式 1. 了确保消息不会丢失,RabbitMQ支持消息应答.消费者发送一个消息应答,告诉RabbitMQ这个消息已经接收并且处理完毕了.RabbitMQ就可以删除它了 ...
- Luogu-4166 [SCOI2007]最大土地面积
求平面内四边形的最大面积 显然四个端点都应该在凸包上,就先求凸包,然后\(n^2\)枚举四边形对角线,对于一个点\(i\),顺序枚举\(j\),同时用旋转卡壳的方法去找离对角线最远的两个点.总时间复杂 ...
- BEM —— 源自Yandex的CSS 命名方法论
原文链接: https://segmentfault.com/a/1190000000391762 人们问我最多的问题之一是在CSS类名中--和__是什么意思?它们的出现是源于BEM和Nicolas ...
- LINQ 学习路程 -- 查询操作 Select, SelectMany
IList<Student> studentList = new List<Student>() { , StudentName = "John" }, , ...
- Oracle的PL_SQL的结构
--PL/SQL的结构 declare --声明变量和常量关键字 v_name nvarchar2(); v_age integer;--常规变量声明 v_product table_name.col ...
- R 语言实现求导
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能 ...
- POJ 2421 Constructing Roads(Kruskal算法)
题意:给出n个村庄之间的距离,再给出已经连通起来了的村庄.求把所有的村庄都连通要修路的长度的最小值. 思路:Kruskal算法 课本代码: //Kruskal算法 #include<iostre ...
- ES doc_values的来源,field data——就是doc->terms的正向索引啊,不过它是在查询阶段通过读取倒排索引loading segments放在内存而得到的?
Support in the Wild: My Biggest Elasticsearch Problem at Scale Java Heap Pressure Elasticsearch has ...
- Selenium-一组元素的定位
一组元素的定位: 有时候我们可能需要定位一组元素,比如一组checkbox,这时候要实现的思路大概为: 先把一组元素识别出来,然后定位你需要的元素 下面是查找多个元素(这些方法将返回一个列表): 方法 ...