解题关键:

1、此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$

2、此题可用组合数学的思想考虑,总的步数一共有$n+m-2$步,在这所有的步数中,需要选择向下走的步数的位置,由此可得,答案的解为:$C_{n + m - 2}^{n - 1}$

此题即可转化为大组合数取模问题;

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
ll mod_pow(ll x,ll n,ll p){
ll res=;
while(n){
if(n&) res=res*x%p;
x=x*x%p;
n>>=;
}
return res;
}
ll comb(ll n,ll m,ll p){
if(n==m) return ;
if(n<m) return ;
if(m>n-m) m=n-m; ll tn=,tm=;
while(m){
tn=tn*n%p;
tm=tm*m%p;
n--,m--;
}
return (tn*mod_pow(tm,p-,p)+mod)%mod;
}
int main(){
int n,m;
cin>>n>>m;
ll ans=comb(n+m-,n-,mod);
cout<<ans<<endl;
return ;
}

如下为dp的解法

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int dp[][];
int main(){
int n,m;
cin>>n>>m;
for(int i=;i<=;i++){
dp[][i]=dp[i][]=;
}
for(int i=;i<=m;i++){
for(int j=;j<=n;j++){
dp[i][j]=(dp[i-][j]+dp[i][j-])%mod;
}
}
cout<<dp[m][n]<<endl;
}

[51nod1119]机器人走方格V2的更多相关文章

  1. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  2. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  3. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  4. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  7. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  8. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

  9. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

随机推荐

  1. 创建图形用户界面GUI和事件监听机制的简单实现(java)

    创建图形化界面 1.创建Frame窗体      2.对窗体进行基本设置 比如:大小.位置.布局      3.定义组件      4.将组建通过窗体添加到窗体中 5.让窗体显示,通过setVisib ...

  2. python安装包的方式

    easy_install 老版python只有easy_install pip install 说明: 是easy_install的改进版,提供更好的信息提示,添加删除package等功能 安装方式: ...

  3. 20145229吴姗珊 《Java程序设计》第4周学习总结

    20145229吴姗珊 <Java程序设计>第4周学习总结 教材学习内容总结 第六章 继承与多态 6.1继承共同行为 1.继承基本上就是避免多个类间重复定义共同行为 简单的类的定义 使用s ...

  4. [java]Arrays.copyOf() VS System.arrayCopy()

    If we want to copy an array, we can use either System.arraycopy() or Arrays.copyOf(). In this post, ...

  5. Luogu-3705 [SDOI2017]新生舞会

    分数规划,最大费用最大流 题意可以简化为给出一个矩阵,要求每行和每列必须且只能取一个格子,要求\(sigma\ a_{i,j}/sigma\ b_{i,j}\) 最大 考虑分数规划,可以将式子转化: ...

  6. castle windsor学习-----How components are created

  7. Java 面试题问与答:编译时与运行时

    Java 面试题问与答:编译时与运行时 2012/12/17 | 分类: 基础技术, 职业生涯 | 5 条评论 | 标签: RUNTIME, 面试 分享到:58 本文作者: ImportNew - 朱 ...

  8. css3 多列布局使用

    css3的出现,解决了不少前端的问题,比如动画,圆角等: 这里总结一下css3 的多列布局: w3c上给出了很多属性: 我们一般用到column-count.column-gap.column-wid ...

  9. codeforces 589G G. Hiring(树状数组+二分)

    题目链接: G. Hiring time limit per test 4 seconds memory limit per test 512 megabytes input standard inp ...

  10. 【leetcode刷题笔记】Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...