题目:

题目背景

NOIP2015 提高组 Day2 T2

题目描述

有两个仅包含小写英文字母的字符串 A 和 B 。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出的位置不同也认为是不同的方案。

输入格式

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k ,每两个整数之间用一个空格隔开。
第二行包含一个长度为 n 的字符串,表示字符串 A 。
第三行包含一个长度为 m 的字符串,表示字符串 B 。

输出格式

输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对 1,000,000,007 取模的结果。

样例数据 1

输入  [复制]

6 3 1 
aabaab 
aab

输出

2

样例数据 2

输入  [复制]

6 3 2 
aabaab 
aab

输出

7

样例数据 3

输入  [复制]

6 3 3 
aabaab 
aab

输出

7

备注

【样例说明】
所有合法方案如下:(加下划线的部分表示取出的子串)
样例1:aab aab / aab aab
样例2:a ab aab / a aba ab / a a ba ab / aab a ab
              aa b aab / aa baa b / aab aa b
样例3:a a b aab / a a baa b / a ab a a b / a aba a b
              a a b a a b / a a ba a b / aab a a b

【数据范围】 
对于第1组数据:1≤n≤500,1≤m≤50,k=1;
对于第2组至第3组数据:1≤n≤500,1≤m≤50,k=2;
对于第4组至第5组数据:1≤n≤500,1≤m≤50,k=m;
对于第1组至第7组数据:1≤n≤500,1≤m≤50,1≤k≤m;
对于第1组至第9组数据:1≤n≤1000,1≤m≤100,1≤k≤m;
对于所有10组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

题解:

  用f[i][j][k][0/1]表示b已经被匹配到了第j个,a的第i个取或不取,此时已经取出的k个子串,得出转移方程:

    如果a串第i个与b串第j个相等

  f[i&1][j][k][1]=((f[(i-1)&1][j-1][k-1][0]+f[(i-1)&1][j-1][k][1])%mod+f[(i-1)&1][j-1][k-1][1])%mod;
  f[i&1][j][k][0]=(f[(i-1)&1][j][k][0]+f[(i-1)&1][j][k][1])%mod;

   否则

     f[i&1][j][k][0]=(f[(i-1)&1][j][k][0]+f[(i-1)&1][j][k][1])%mod;

f[i&1][j][k][1]=0;

  上述转移方程的第一维之所以要&1是因为直接开正常的数组会爆空间··所以这里开了一个滚动数组····

 

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<ctime>
using namespace std;
const int N=;
const int M=;
const int mod=1e9+;
int n,m,K,f[][M][M][];
char s[N],t[M];
int main(){
//freopen("a.in","r",stdin);
scanf("%d%d%d%s%s",&n,&m,&K,s+,t+);
f[][][][]=f[][][][]=;
for(int i=;i<=n;i++)
for(int j=;j<=min(m,i);j++)
for(int k=;k<=min(K,j);k++)
{
if(s[i]==t[j]){
f[i&][j][k][]=((f[(i-)&][j-][k-][]+f[(i-)&][j-][k][])%mod+f[(i-)&][j-][k-][])%mod;
f[i&][j][k][]=(f[(i-)&][j][k][]+f[(i-)&][j][k][])%mod;
}
else{
f[i&][j][k][]=(f[(i-)&][j][k][]+f[(i-)&][j][k][])%mod;
f[i&][j][k][]=;
}
}
cout<<(f[n&][m][K][]+f[n&][m][K][])%mod<<endl;
return ;
}

刷题总结——子串(NOIP2015)的更多相关文章

  1. 刷题总结——子串(NOIP2015提高组)

    题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...

  2. 【NOIP2015模拟11.4】JZOJ8月6日提高组T1 刷题计划

    [NOIP2015模拟11.4]JZOJ8月6日提高组T1 刷题计划 题目 题解 题意 有\(n\)道题,编号为1~\(n\) 给出\(m\)次操作 每次操作有3种类型 1 \(x\) 表示交了\(A ...

  3. LeetCode刷题指南(字符串)

    作者:CYC2018 文章链接:https://github.com/CyC2018/CS-Notes/blob/master/docs/notes/Leetcode+%E9%A2%98%E8%A7% ...

  4. NOIp2018停课刷题记录

    Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...

  5. 好像leeceode题目我的博客太长了,需要重新建立一个. leecode刷题第二个

    376. Wiggle Subsequence               自己没想出来,看了别人的分析. 主要是要分析出升序降序只跟临近的2个决定.虽然直觉上不是这样. 455. 分发饼干     ...

  6. LeetCode刷题记录(python3)

    由于之前对算法题接触不多,因此暂时只做easy和medium难度的题. 看完了<算法(第四版)>后重新开始刷LeetCode了,这次决定按topic来刷题,有一个大致的方向.有些题不止包含 ...

  7. PAT-甲级刷题笔记和总结

     本帖主要记录一些自己在刷题过程中的一些笔记,包括: 1.常用的函数 2.STL中常用方法 3.常见错误 4.其他常用方法 5.刷题过程中的常见算法:https://www.cnblogs.com/M ...

  8. 【刷题】BZOJ 4566 [Haoi2016]找相同字符

    Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别为 ...

  9. 刷题常用的STL容器总结

    本文归纳总结刷题常用到STL容器以及一些标准算法,主要包括: string.vector.map.pair.unordered_map.set.queue.priority_queue.stack,以 ...

随机推荐

  1. tp5简单构造

    application 应用目录 网站核心index前台目录 controller 控制器admin 后台目录 model 数据模型view 视图extend 静态类库目录public 静态资源和入口 ...

  2. 裸机——SD卡

    1.首先要对SD卡有个基础知识 (1) SD = nandflash + 主控IC. 主控IC负责了校验和坏块管理,所以SoC只需要依照时序就可以和SD卡上的主控IC进行数据交换等操作. (2) SD ...

  3. Drazil and Tiles CodeForces - 516B (类拓扑)

    Drazil created a following problem about putting 1 × 2 tiles into an n × m grid: "There is a gr ...

  4. P2567 [SCOI2010]幸运数字 DFS+容斥定理

    P2567 [SCOI2010]幸运数字 题目描述 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,66 ...

  5. Aizu:0189-Convenient Location

    Convenient Location Time limit 1000 ms Memory limit 131072 kB Problem Description 明年毕业的A为就业而搬家.就职的公司 ...

  6. Permute Digits 915C

    You are given two positive integer numbers a and b. Permute (change order) of the digits of a to con ...

  7. 使用dataframe解决spark TopN问题:分组、排序、取TopN和join相关问题

    package com.profile.mainimport org.apache.spark.sql.expressions.Windowimport org.apache.spark.sql.fu ...

  8. I2C中24C02从地址设置

    从设备地址 首先,先看一下AT24C02的芯片资料,我们会发现AT24C02有三个地址A0,A1,A2.同时,我们会在资料的Device Address介绍发现I2C器件一共有七位地址码,还有一位是读 ...

  9. 简易版AI英文问答程序解决

    第四章的作业和实践题要论印象深刻无疑就是AI的那道题了.不得不说一开始看到题目的时候,我真的蒙了很久. 本题要求你实现一个简易版的 AI 英文问答程序,规则是: 1.无论用户说什么,首先把对方说的话在 ...

  10. VHDL语法入门学习第一篇

    1. 现在先遇到一个VHDL的语法问题,以前没用过VHDL,现在要去研究下,进程(PROCESS) 进程内部经常使用IF,WAIT,CASE或LOOP语句.PROCESS具有敏感信号列表(sensit ...