Spark setMaster源码

/**
* The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to
* run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster.
*/
def setMaster(master: String): SparkConf = {
set("spark.master", master)
}

要连接到的主URL,例如“local”用一个线程在本地运行,“local [ 4 ]”用4个内核在本地运行,或者“Spark : / / master : 7077”用Spark独立集群运行。

package cn.rzlee.spark.scala

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} // object相当于静态的
object ScalaWordCount {
def main(args: Array[String]): Unit = { //创建spark配置,设置应用程序名字
val conf = new SparkConf().setAppName("wordCountApp") // 创建spark执行入口
val sc = new SparkContext() // 指定以后从哪里读取数据创建RDD(弹性分布式数据集)
val lines: RDD[String] = sc.textFile("")
// 切分压平
val words: RDD[String] = lines.flatMap(_.split(" "))
// 将单词和一组合
val wordAndOne: RDD[(String, Int)] = words.map((_, ))
// 按key进行聚合 相同key不变,将value相加
val reduced: RDD[(String, Int)] = wordAndOne.reduceByKey(_+_)
// 排序
val sorted = reduced.sortBy(_._2,false)
// 将结果保存到HDFS中
sorted.saveAsTextFile("")
//释放资源
sc.stop()
}
}

基于排序机制的wordCount

java 版本:

package cn.rzlee.spark.core;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
import scala.actors.threadpool.Arrays; /**
* @Author ^_^
* @Create 2018/11/3
*/
public class SortWordCount {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("SortWordCount").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf); // 创建line RDD
JavaRDD<String> lines = sc.textFile("C:\\Users\\txdyl\\Desktop\\log\\in\\data.txt", 1); // 执行单词计数
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split("\t"));
}
}); JavaPairRDD<String, Integer> pair = words.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<>(s, 1);
}
}); JavaPairRDD<String, Integer> wordCounts = pair.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); // 进行key-value的反转映射
JavaPairRDD<Integer, String> countWords = wordCounts.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> t) throws Exception {
return new Tuple2<>(t._2, t._1);
}
}); // 按照key进行排序
JavaPairRDD<Integer, String> sortedCountWords = countWords.sortByKey(false); // 再次进行key-value的反转映射
JavaPairRDD<String, Integer> sortedWordCounts = sortedCountWords.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
@Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> t) throws Exception {
return new Tuple2<>(t._2, t._1);
}
}); // 打印结果
sortedWordCounts.foreach(new VoidFunction<Tuple2<String, Integer>>() {
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + " appears " + t._2+ " times.");
}
});
// 关闭JavaSparkContext
sc.close();
}
}

scala版本:

package cn.rzlee.spark.scala

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object SortWordCount {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local")
val sc = new SparkContext(conf) val lines = sc.textFile("C:\\Users\\txdyl\\Desktop\\log\\in\\data.txt",1)
val words: RDD[String] = lines.flatMap(line=>line.split("\t"))
val pairs: RDD[(String, Int)] = words.map(word=>(word,1))
val wordCounts: RDD[(String, Int)] = pairs.reduceByKey(_+_)
val countWords: RDD[(Int, String)] = wordCounts.map(wordCount=>(wordCount._2, wordCount._1))
val sortedCountWords = countWords.sortByKey(false)
val sortedWordCounts: RDD[(String, Int)] = sortedCountWords.map(sortedCountWord=>(sortedCountWord._2, sortedCountWord._1))
sortedWordCounts.foreach(sortedWordCount=>{
println(sortedWordCount._1+" appear "+ sortedWordCount._2 + " times.")
}) sc.stop()
} }

Spark-Spark setMaster & WordCount Demo的更多相关文章

  1. Spark练习之wordcount,基于排序机制的wordcount

    Spark练习之wordcount 一.原理及其剖析 二.pom.xml 三.使用Java进行spark的wordcount练习 四.使用scala进行spark的wordcount练习 五.基于排序 ...

  2. Spark metrics on wordcount example

    I read the section Metrics on spark website. I wish to try it on the wordcount example, I can't make ...

  3. Spark初步 从wordcount开始

    Spark初步-从wordcount开始 spark中自带的example,有一个wordcount例子,我们逐步分析wordcount代码,开始我们的spark之旅. 准备工作 把README.md ...

  4. [spark]spark 编程教程

      参考: 英文:https://spark.apache.org/docs/latest/programming-guide.html 中文:http://www.cnblogs.com/lujin ...

  5. 分布式计算框架-Spark(spark环境搭建、生态环境、运行架构)

    Spark涉及的几个概念:RDD:Resilient Distributed Dataset(弹性分布数据集).DAG:Direct Acyclic Graph(有向无环图).SparkContext ...

  6. [spark] spark 特性、简介、下载

    [简介] 官网:http://spark.apache.org/ 推荐学习博客:http://dblab.xmu.edu.cn/blog/spark/ spark是一个采用Scala语言进行开发,更快 ...

  7. Spark学习之wordcount程序

    实例代码: import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap ...

  8. Spark Streaming的样本demo统计

    废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apac ...

  9. 50、Spark Streaming实时wordcount程序开发

    一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ...

随机推荐

  1. llinux获取系统时间

    linux中获取当前时间.统计程序运行时间,可以使用gettimeofday()得到毫秒级的时间统计,利用rdtsc指令获取纳秒级时间统计. gettimeofday() 它是一个linux C库函数 ...

  2. 【elasticsearch】安装合集

    [elasticsearch](1)centos7 使用yum安装elasticsearch 2.X [elasticsearch](2)centos7 超简单安装elasticsearch 的监控. ...

  3. iOS系列译文:整洁的表视图代码

    本文由 伯乐在线 - christian 翻译自 Florian Kugler.欢迎加入技术翻译小组.转载请参见文章末尾处的要求. 表视图是一个非常万能的iOS应用程序构建模块.因此,有很多与表视图直 ...

  4. XtraBackup全备与增量备份

    一.XtraBackup安装 下载地址:http://www.percona.com/downloads/XtraBackup/XtraBackup-2.2.8/source/ 安装步骤: ===== ...

  5. SVN分支与主干

    我的理解:在svn版本库中创建两个目录,一个主干如truck,一个分支目录如branch(注:分支可以创建多个),分别在客户端中检出代码,在分支中进行bug的修复以及新模块的开发,开发完后再merge ...

  6. pdf文件编辑

    下载软件:Foxit PDF Editor,这个工具挺好用的,可以对pdf文件内容进行编辑 Foxit PDF Editor 是第一个真正的PDF文件编辑软件.许多人都希望能找到一个象编辑其它类型的文 ...

  7. thrift实例

    Thrift实例 Apache thrift是 Facebook 实现的一种高效的.支持多种编程语言的远程服务调用的框架. 它采用接口描述语言定义并创建服务,支持可扩展的跨语言服务开发,所包含的代码生 ...

  8. HBase核心技术点

    表的rowkey设计核心思想: 依据rowkey查询最快 对rowkey进行范围查询range 前缀匹配 预分区创建的三种方式 create 'ns1:t1', 'f1', SPLITS => ...

  9. 让intellij挂在异常处,特别是出现null pointer的地方

    1 在Intellij中设置java exception breakpoint 在调试模式下,run->view breakpoints 在java exception breakpoints- ...

  10. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...