谁骗我这是贪心TT

大概就是求k的n次方等于p时的k(k到10^9),由于,p的数据到了10^101,n到200,所以直接算估计T ??

反正看完想到二分,其实数据要是再大点估计我这个二分不行。

网上有三种思路:

    1、很自然的,因为觉得数据很大,会去想高精度(可以自己想,或者pow直接double数据还是挺小的)。然后加二分猜数。

    2、于是想到转换数学运算:指对互化。用double存,但是double 精确位只有6—7。而没有logx Y,只有先转化为以e为底的对数。用lognP=logn/logP。用两次函数,

    精确度不能满足要求。

    3、换思路:k^n=p,则p^(1/n)=k。且函数可以直接用pow(x,y)去求x^y。 PS:double精确数值只到16、17的样子,总之慎用。

    类型            长度 (bit)           有效数字                   绝对值范围

    float                32                      6~7                        10^(-37) ~ 10^38

    double           64                    15~16                       10^(-307) ~10^308

    long double  128                 18~19                     10^(-4931) ~ 10 ^ 4932

//简单法
#include<stdio.h>
#include<cmath>
int main()
{
double n,p;
while(scanf("%lf%lf",&n,&p)!=EOF)
{
printf("%.0f\n",pow(p,1/n));
}
return 0;
} //然而也可以二分,试着敲下。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h> // 取绝对值
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue> //priority_queue<int>
#include <vector>
#include <map>
#include <set>
#include <utility> //pair类或者 typedef pair<int ,int>P;
#define LL long long
#define CAN(a,b) memset(a,b,sizeof(a)) //大数 memset(a,0x7f,sizeof(a));
#define MAX_N
const int INF = 0x3f3f3f3f;
using namespace std;
LL binary(double n,double p)
{
LL right,left,mid;
double ans;
right = 10000000002;
left = 0;
while(left<=right)
{
mid = (left+right)/2;
ans = pow(mid,n);
if(ans == p)
return mid;
else
{
if(ans<p)
left = mid+1;
else right = mid;
}
}
}
int main()
{
double n,p;
while(scanf("%lf%lf",&n,&p)!=EOF)
{
printf("%lld\n",binary(n,p));
}
return 0;
}

【二分】POJ 2109的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】

    题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...

  3. POJ - 2109 Power of Cryptography(高精度log+二分)

    Current work in cryptography involves (among other things) large prime numbers and computing powers ...

  4. POJ 2109 Power of Cryptography 大数,二分,泰勒定理 难度:2

    import java.math.BigInteger; import java.util.Scanner; public class Main { static BigInteger p,l,r,d ...

  5. poj 2109 Power of Cryptography (double 精度)

    题目:http://poj.org/problem?id=2109 题意:求一个整数k,使得k满足kn=p. 思路:exp()用来计算以e为底的x次方值,即ex值,然后将结果返回.log是自然对数,就 ...

  6. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  7. 二分 poj 3273

    题目链接:https://vjudge.net/problem/POJ-3273 把n个连续的数字划分成m个连续的部分,每个部分都有一个部分和(这个部分所有值加起来),现在要使划分里最大的那个部分和最 ...

  8. POJ 2109 巧妙解法

    Int最大是10^9.所以一般思路是二分+高精度.但是double 范围是10^(-307)-10^308所以可以用double型.k^n=p.所以有k=p^(1/n). 见代码: #include& ...

  9. POJ 2109 Inner Vertices(扫描线+树状数组)

    [题目链接] http://poj.org/problem?id=3109 [题目大意] 在一个棋盘上放满白子,现在把一些白子变成黑子, 如果一个白子上下左右都有黑子,就会变成黑子,问最终黑子个数 [ ...

随机推荐

  1. code::blocks编译出错

    问题描述: 在windows xp 上编译的cbp项目(已经生成.obj文件),放到fedora上无法顺利编译.(build) collect2:error: ld returned 1 exit s ...

  2. android 性能优化-电量篇

    消耗电量的几个主要原因.功能:1.大数据量的网络传输(网络)2.不停的网络切换(网络)3.解析大量的数据(CPU) 关于网络方面的优化: .网络请求之前,检查网络连接.没有网络连接不进行请求 .判断网 ...

  3. tyvj1172 自然数拆分Lunatic版

    背景 话说小小鱼看了P1171(自然数拆分)之后感觉异常不爽,于是异常邪恶地将题目加强. 描述 输入自然数n,然后将其拆分成由若干数相加的形式,参与加法运算的数可以重复. 输入格式 输入只有一个整数n ...

  4. Servlet监听器

    一.servlet的8个监听器 场景 监听者接口 事件类型 你想知道一个web应用上下文中是否增加.删除或替换了一个属性 javax.servlet.ServletContextAttributeLi ...

  5. UVA-11991 Easy Problem from Rujia Liu?

    Problem E Easy Problem from Rujia Liu? Though Rujia Liu usually sets hard problems for contests (for ...

  6. PHP合并2个数字键数组的值

    先要了解一个基础知识点:PHP数组合并+与array_merge的区别分析 & 对多个数组合并去重技巧 <?php /** * PHP合并2个数字键数组的值 * * @param arr ...

  7. MySQL 常用SQL技巧和常见问题

    一.巧用正则表达式 二.巧用RAND() 提取随机行 利用rand() 的随机数功能,结合 order by 子句完成随机抽取某些行的功能. 三.利用 group by 的 with rollup 子 ...

  8. PHP中计划任务

    PHP不支持多线程,有时候处理问题不是那么爽,今天谈论一下PHP定时执行的方法 PHP定时执行的三种方式实现 .windows 的计划任务 .linux的脚本程序 .让web浏览器定时刷新 windo ...

  9. PROJ4初探(转并整理格式)

    PROJ4初探(转并整理格式) Proj4是一个免费的GIS工具,软件还称不上. 它专注于地图投影的表达,以及转换.采用一种非常简单明了的投影表达--PROJ4,比其它的投影定义简单,但很明显.很容易 ...

  10. Host文件设置

    地址:C:\Windows\System32\drivers\etc 可以在注释语句前加入 "#" hosts文件是Windows系统中一个负责IP地址与域名快递解析的文件,以AS ...