Thread 和 ThreadPool 简单梳理(C#)【并发编程系列】
〇、前言
对于 Thread 和 ThreadPool 已经是元老级别的类了。Thread 是 C# 语言对线程对象的封装,它从 .NET 1.0 版本就有了,然后 ThreadPool 是 .Net Framework 2.0 版本中出现的,都是相当成熟的存在。
当然,现在已经出现了 Task 和 PLinq 等更高效率的并发类,线程和线程池在实际开发中逐渐减少了,但是不能不知道他们的用法,因为总有需要对接的内容,别人用了你也得能看懂。
本文将结合示例,简单介绍下 Thread 和 ThreadPool。
一、Thread 类
Thread 类的功能就是,创建和控制线程,设置其优先级并获取其状态。
下边代码简单示例说明下 Thread 的相关内容:
public static void Main()
{
// (1)
//var th1 = new Thread(ExecuteInForeground);
//th1.Start();
// (2)
//var th2 = new Thread(ExecuteInForeground);
//th2.IsBackground = true;
//th2.Start();
// (3)
//ThreadPool.QueueUserWorkItem(ExecuteInForeground);
Thread.Sleep(1000);
// Console.WriteLine($"主线程 ({Thread.CurrentThread.ManagedThreadId}) 即将退出 执行 Join() 方法。。。");
// th2.Join();
Console.WriteLine($"主线程 ({Thread.CurrentThread.ManagedThreadId}) 即将退出。。。");
//Console.ReadLine();
}
private static void ExecuteInForeground(object state)
{
var sw = Stopwatch.StartNew();
Console.WriteLine("线程 {0}: {1}, 优先级: {2}",
Thread.CurrentThread.ManagedThreadId,
Thread.CurrentThread.ThreadState,
Thread.CurrentThread.Priority);
do
{
Console.WriteLine("线程 {0}: 计时 {1:N2} 秒",
Thread.CurrentThread.ManagedThreadId,
sw.ElapsedMilliseconds / 1000.0);
Thread.Sleep(500);
} while (sw.ElapsedMilliseconds <= 5000);
sw.Stop();
}
注释部分三组线程启动的结果如下三图:
第 1 部分,是前台线程,必须运行完毕,主线程才会退出,所以一直运行到 5s 之前。
第 2、3 部分,均为后台线程,当主线程运行完成之时,无论是否运行完成直接中断,所以只循环了两次就退出了。
关于 Join() 方法
代码中th2.Join()
如果在后台线程上执行,这结果如下图,将会等待后台线程完成后主线程才结束。
二、ThreadPool 类
由于线程对象的创建时需要分配内存,GC 过程中销毁对象,然后整合零散的内存块,从而占用 CPU 资源,会影响程序性能,所以 ThreadPool 诞生了。
- 使用线程池,可以通过向应用程序提供由系统管理的工作线程池,来更有效的使用线程。
- 线程池可以通过重用线程、控制线程数量等操作,减少频繁创建和切换线程所带来的开销,从而提高响应速度。
- 可直接使用线程池中空闲的线程,而不必等待线程的创建,方便管理线程。
注意,托管线程池中的线程是后台线程,其 IsBackground 属性为 true。
1、ThreadPool 的几个属性值
- CompletedWorkItemCount:获取迄今为止已处理的工作项数。
- PendingWorkItemCount:获取当前已加入处理队列的工作项数。
- ThreadCount:获取当前存在的线程池线程数。
下面是一个关于线程池的几个属性值,以及开启新的后台线程并传入参数的实例:
//存放要计算的数值的字段
public static double num1 = -1;
public static double num2 = -1;
static void Main(string[] args)
{
int workerThreads, completionPortThreads;
// public static void GetMaxThreads (out int workerThreads, out int completionPortThreads);
ThreadPool.GetMaxThreads(out workerThreads, out completionPortThreads);
Console.WriteLine($"线程池中辅助线程的最大数目:{workerThreads}");
Console.WriteLine($"线程池中异步 I/O 线程的最大数目:{completionPortThreads}");
Console.WriteLine();
// public static void GetMinThreads(out int workerThreads, out int completionPortThreads);
ThreadPool.GetMinThreads(out workerThreads, out completionPortThreads);
Console.WriteLine($"线程池根据需要创建的最少数量的辅助线程:{workerThreads}");
Console.WriteLine($"线程池根据需要创建的最少数量的异步 I/O 线程:{completionPortThreads}");
Console.WriteLine();
ThreadPool.SetMaxThreads(100, 15); // set 的值必须是 Min~Max 之间的值,否则会设置不成功
ThreadPool.GetMaxThreads(out workerThreads, out completionPortThreads);
Console.WriteLine($"set 线程池中辅助线程的最大数目:{workerThreads}");
Console.WriteLine($"set 线程池中异步 I/O 线程的最大数目:{completionPortThreads}");
Console.WriteLine();
// 命名参数 传入后台线程
int num = 2;
// 启动第一个任务:计算x的8次方
Console.WriteLine("启动第一个任务:计算{0}的8次方.", num);
ThreadPool.QueueUserWorkItem(new WaitCallback(TaskProc1), num);
// 启动第二个任务
Console.WriteLine("启动第二个任务:计算{0}的8次方", num);
ThreadPool.QueueUserWorkItem(new WaitCallback(TaskProc2), num);
// 等待两个数值等完成计算
while (num1 == -1 || num2 == -1) ;
//打印计算结果
Console.WriteLine($"{num} 的 8 次方为 {num1} {num2}");
Console.ReadLine();
}
private static void TaskProc2(object state)
{
Console.WriteLine($"TaskProc2-Thread-{Thread.CurrentThread.IsBackground}");
num1 = Math.Pow(Convert.ToDouble(state), 8);
}
private static void TaskProc1(object state)
{
num2 = Math.Pow(Convert.ToDouble(state), 8);
}
输出结果:
2、由线程池生成一个可以取消的后台线程
如下代码,在没有单击回车键之前,程序会一直打印递增数字,当收到回车指令后,cts.Cancel();
被执行,后台线程就取消成功了。
static void Main(string[] args)
{
CancellationTokenSource cts = new CancellationTokenSource();
ThreadPool.QueueUserWorkItem(t => Counts(cts.Token, 1000));
Console.WriteLine("Press Any Key to cancel the operation");
Console.ReadLine();
cts.Cancel();
Console.ReadLine();
}
private static void Counts(CancellationToken token, int CountTo)
{
for (int count = 0; count < CountTo; count++)
{
if (token.IsCancellationRequested)
{
Console.WriteLine("Count is cancelled");
break;
}
Console.WriteLine(count);
Thread.Sleep(200);
}
Console.WriteLine("Count is stopped");
}
结果如下图:
三、Thread 和 ThreadPool 性能比较
如下代码,分别执行 100 次,看最终需要的时间成本:
public static void Main()
{
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 0; i < 100; i++)
{
Thread th = new Thread(() =>
{
int count = 0;
count++;
});
th.Start();
}
sw.Stop();
Console.WriteLine("运行创建线程所需要的时间为:" + sw.ElapsedMilliseconds);
sw.Restart();
for (int i = 0; i < 100; i++)
{
ThreadPool.QueueUserWorkItem(t =>
{
int count = 0;
count++;
});
}
sw.Stop();
Console.WriteLine("运行线程池所需要花费的时间:" + sw.ElapsedMilliseconds);
Console.ReadLine();
}
如下图,明显线程池性能更佳:
参考:https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.threadpool?view=net-7.0
https://learn.microsoft.com/zh-cn/dotnet/api/system.threading.thread?view=net-7.0
C#(ThreadPool)线程池的详解及使用范例 .NET(C#) ThreadPool线程池的使用总结
Thread 和 ThreadPool 简单梳理(C#)【并发编程系列】的更多相关文章
- [ 高并发]Java高并发编程系列第二篇--线程同步
高并发,听起来高大上的一个词汇,在身处于互联网潮的社会大趋势下,高并发赋予了更多的传奇色彩.首先,我们可以看到很多招聘中,会提到有高并发项目者优先.高并发,意味着,你的前雇主,有很大的业务层面的需求, ...
- Java并发编程系列-(5) Java并发容器
5 并发容器 5.1 Hashtable.HashMap.TreeMap.HashSet.LinkedHashMap 在介绍并发容器之前,先分析下普通的容器,以及相应的实现,方便后续的对比. Hash ...
- Java并发编程系列-(4) 显式锁与AQS
4 显示锁和AQS 4.1 Lock接口 核心方法 Java在java.util.concurrent.locks包中提供了一系列的显示锁类,其中最基础的就是Lock接口,该接口提供了几个常见的锁相关 ...
- Java并发编程系列-(2) 线程的并发工具类
2.线程的并发工具类 2.1 Fork-Join JDK 7中引入了fork-join框架,专门来解决计算密集型的任务.可以将一个大任务,拆分成若干个小任务,如下图所示: Fork-Join框架利用了 ...
- Java并发编程系列-(1) 并发编程基础
1.并发编程基础 1.1 基本概念 CPU核心与线程数关系 Java中通过多线程的手段来实现并发,对于单处理器机器上来讲,宏观上的多线程并行执行是通过CPU的调度来实现的,微观上CPU在某个时刻只会运 ...
- Java并发编程系列-(6) Java线程池
6. 线程池 6.1 基本概念 在web开发中,服务器需要接受并处理请求,所以会为一个请求来分配一个线程来进行处理.如果每次请求都新创建一个线程的话实现起来非常简便,但是存在一个问题:如果并发的请求数 ...
- Java并发编程系列-(7) Java线程安全
7. 线程安全 7.1 线程安全的定义 如果多线程下使用这个类,不过多线程如何使用和调度这个类,这个类总是表示出正确的行为,这个类就是线程安全的. 类的线程安全表现为: 操作的原子性 内存的可见性 不 ...
- Java并发编程系列-(9) JDK 8/9/10中的并发
9.1 CompletableFuture CompletableFuture是JDK 8中引入的工具类,实现了Future接口,对以往的FutureTask的功能进行了增强. 手动设置完成状态 Co ...
- 干货:Java并发编程系列之volatile(二)
接上一篇<Java并发编程系列之synchronized(一)>,这是第二篇,说的是关于并发编程的volatile元素. Java语言规范第三版中对volatile的定义如下:Java编程 ...
- Java并发编程系列-(8) JMM和底层实现原理
8. JMM和底层实现原理 8.1 线程间的通信与同步 线程之间的通信 线程的通信是指线程之间以何种机制来交换信息.在编程中,线程之间的通信机制有两种,共享内存和消息传递. 在共享内存的并发模型里,线 ...
随机推荐
- 靶机渗透【billu_b0x】
ip扫描 访问80端口 目录扫描 逐个访问 上传一个图片马,结果没有回显 显示file参数为空.请在"文件"参数中提供文件路径 打开发现有用户名 ![] 发现数据库连接的配置信息, ...
- css 利用 linear-gradient 实现条纹背景
1. 水平条纹背景 当给背景设置渐变效果时,默认的渐变方向是垂直由上到下的,效果如下: { background: linear-gradient(#aaa, #ddd); } 尝试拉近色标的距离,会 ...
- 区块链——Lab2
区块链的典型数据结构 比特币:UTXO模型,以交易后找零为中心 ETH:Account 模型,以账户余额为中心(就是账户的形式) 区块链交易 用户发起交易 矿工验证交易(能够得到 区块奖励) 验证成功 ...
- 统计计算——Bootstrap总结整理
Bootstrapping Boostrap 有放回的重抽样. 符号定义: 重复抽样的bootstrap \(F^*\) 观测到的样本\(\hat F\),是一个经验分布 真实分布\(F\) Eg. ...
- ThreadLocal实现原理和使用场景
ThreadLocal是线程本地变量,每个线程中都存在副本. 实现原理: 每个线程中都有一个ThreadLocalMap,而ThreadLocalMap中的key即是ThreadLocal. 内存泄 ...
- VUEX(状态管理)之憨憨篇
1.导入vuex包 import vuex from 'vuex' 2.注册vuex到vue中 vue.use(vuex) 3.new vuex.store() 得到一个数据存储对象 var stor ...
- MySQL事务和锁实战篇
文章目录 MySQL事务和锁 事务 事务的控制语句 事务隔离级别设置 脏读 不可重复读 幻读 锁机制 InnoDB的行级锁 锁实战 死锁 总结 MySQL事务和锁 事务 说到关系型的数据库的事务,相信 ...
- 文心一言 VS chatgpt (10)-- 算法导论 3.1 2~3题
二.证明:对任意实常量a和b,其中b>0,有(n+a) ^ b=O(n ^ b). 文心一言: 设a=b,则有(n+a) ^ b=(n+b)(n+a)=n ^ b+n ^ b =O(n ^ b) ...
- Vue全局公共服务类mixin
首先,简单介绍下mixin: Mixin是面向对象程序设计语言中的类,提供了方法的实现.其他类可以访问mixin类的方法而不必成为其子类 Mixin类通常作为功能模块使用,在需要该功能时"混 ...
- 虚拟机linux系统密码忘记了该怎么办?
当你的linux系统的密码忘记了该怎么办? 首先不要慌,重启电脑,开机的时候 出现这个页面的时候点击e然后出现这个页面 把里面的ro修改为 rw 修改为rw之后在这一行语句的最后面输入enforcin ...