算法金 | 再见,PCA 主成分分析!
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]
1. 概念:数据降维的数学方法
定义
- 主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组新的变量称为主成分。
- 大白话,PCA能够从数据中提取出最重要的特征,通过减少变量的数量来简化模型,同时保留原始数据集中的大部分信息。
特点
- PCA是最广泛使用的数据降维技术之一,能够有效地揭示数据的内部结构,减少分析问题的复杂度。
应用领域
- 图像处理:图像压缩和特征提取。
- 金融数据分析:风险管理、股票市场分析。
- 生物信息学:基因数据分析、疾病预测。
- 社会科学研究:问卷数据分析、人口研究。
2 核心原理:方差最大化
- 方差最大化:
- PCA通过找到数据方差最大的方向来确定主成分,然后找到次大方向,且这些方向必须是相互正交的。
- 这样做的目的是保证降维后的数据能够保留最多的原始数据信息。
- 计算步骤:
- 数据标准化:使得每个特征的平均值为0,方差为1。
- 计算协方差矩阵:反映变量之间的相关性。
- 计算协方差矩阵的特征值和特征向量:特征向量决定了PCA的方向,特征值决定了方向的重要性。
- 选择主成分:根据特征值的大小,选择最重要的几个特征向量,构成新的特征空间。
3 优缺点分析
- 优点:
- 降维效果显著:能够有效地减少数据的维度,同时尽可能地保留原始数据的信息。
- 揭示数据结构:有助于发现数据中的模式和结构,便于进一步分析。
- 无需标签数据:PCA是一种无监督学习算法,不需要数据标签。
- 缺点:
- 线性限制:PCA只能捕捉到数据的线性关系和结构,对于非线性结构无能为力。
- 方差并非信息量的唯一衡量:有时候数据的重要性并不仅仅体现在方差上,PCA可能会忽略掉一些重要信息。
- 对异常值敏感:异常值可能会对PCA的结果产生较大影响。
4 PCA 实战
介绍一个用于主成分分析的 Python 库
PCA的核心是构建在sklearn功能之上,以便在与其他包结合时实现最大的兼容性。
除了常规的PCA外,它还可以执行SparsePCA和TruncatedSVD。
其他功能包括:
- 使用Biplot绘制载荷图
- 确定解释的方差
- 提取性能最佳的特征
- 使用载荷绘制的散点图
- 使用Hotelling T2和/或SPE/Dmodx进行异常值检测
pip install pca
from pca import pca # 导入PCA模块
import numpy as np
import pandas as pd
# Dataset
from sklearn.datasets import load_iris # 导入鸢尾花数据集
# 从鸢尾花数据集中创建DataFrame对象
X = pd.DataFrame(data=load_iris().data, columns=load_iris().feature_names, index=load_iris().target)
# 初始化PCA模型,指定主成分数量为3,并进行数据标准化
model = pca(n_components=3, normalize=True)
# 拟合并转换数据
out = model.fit_transform(X)
# 创建只包含方向的图
fig, ax = model.biplot(textlabel=True, legend=False, figsize=(10, 6))
下面我们使用 sklearn 里面的 PCA 工具,在一组人脸数据上直观感受下,
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.decomposition import PCA
# 加载Olivetti人脸数据集
faces_data = fetch_olivetti_faces()
X = faces_data.data
# 可视化原始图像和对应的主成分
n_images = 4 # 每行显示的图像数量
n_rows = 4 # 总共的行数
fig, axes = plt.subplots(n_rows, 2*n_images, figsize=(16, 10), subplot_kw={'xticks':[], 'yticks':[]})
# 使用PCA降维
n_components = 50 # 设置PCA保留的主成分数量
pca = PCA(n_components=n_components, whiten=True, random_state=42)
X_pca = pca.fit_transform(X)
for r in range(n_rows):
for i in range(n_images):
index = r * n_images + i
axes[r, 2*i].imshow(X[index].reshape(64, 64), cmap='gray')
axes[r, 2*i].set_title(f'大侠 {index+1} 图像', fontproperties='SimHei') # 手动设置字体
axes[r, 2*i+1].imshow(pca.inverse_transform(X_pca[index]).reshape(64, 64), cmap='bone')
axes[r, 2*i+1].set_title(f'大侠 {index+1} 主成分', fontproperties='SimHei') # 手动设置字体
plt.tight_layout()
plt.show()
我们保留了前 50 个主成分
通过可视化对比图直观感受下,信息保留了多多少,损失了多少
通过对比图可以看到,某一张人脸的基本信息都保留了下来
如果保留 前 100 个主成分,那就更接近原始图片了
你也可以试下,保留 1 个主成分会怎样?通过保留的信息你还认得出来哪过大侠是哪过吗
[ 算法金,碎碎念 ]
- 最近 【不上班】 这个词频繁出现在朋友圈,貌似很火
- 不上班,站着把钱赚了,大概率不可能的
- 不上班,躺着把钱赚了(别想歪了),更是绝大概率不可能的
- 有些圈子,天然就是靠博眼球来筛选用户,真的很可怕
- 想到了一句话【当大家都有病时,你就不觉得这是病了】
- 在这种圈子呆久了,大概率会沦陷的,别以外自己不会,咱都是普通人
- 大部分人都是普通人,普通人通常都不信概率,而概率恰恰是反映常态 分布的
- 悲剧,卒~
全网同名,日更万日,让更多人享受智能乐趣
烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;我们一起,让更多人享受智能乐趣
同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖
算法金 | 再见,PCA 主成分分析!的更多相关文章
- 机器学习 - 算法 - PCA 主成分分析
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...
- PCA主成分分析方法
PCA: Principal Components Analysis,主成分分析. 1.引入 在对任何训练集进行分类和回归处理之前,我们首先都需要提取原始数据的特征,然后将提取出的特征数据输入到相应的 ...
- PCA主成分分析+白化
参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 h ...
- 机器学习之PCA主成分分析
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...
- PCA(主成分分析)方法浅析
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...
- PCA主成分分析(上)
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...
- [机器学习] PCA主成分分析原理分析和Matlab实现方法
转载于http://blog.csdn.net/guyuealian/article/details/68487833 网上关于PCA(主成分分析)原理和分析的博客很多,本博客并不打算长篇大论推论PC ...
- 用PCA(主成分分析法)进行信号滤波
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...
- PCA主成分分析Python实现
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...
- PCA 主成分分析
链接1 链接2(原文地址) PCA的数学原理(转) PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表 ...
随机推荐
- CentOS7下安装Elasticsearch-7.3.2和Elasticsearch-head
下载Elasticsearch-7.3.2-linux-x86_64.tar.gzElasticsearch下载地址:https://www.elastic.co/cn/downloads/elast ...
- Web前端 -- ES6
ES标准中不包含 DOM 和 BOM的定义,只涵盖基本数据类型.关键字.语句.运算符.内建对象.内建函数等通用语法. 本部分只学习前端开发中ES6的最少必要知识,方便后面项目开发中对代码的理解. 1. ...
- tomcat 服务版本内存设置
1. 安装服务,如需指定java路径,需要在service.bat 中修改, 如下图 其中 pa代表当前目录 2. 安装服务, service.bat install 服务名,如下图示例 3. 内存设 ...
- canvas生成表单海报
项目需要输入表单生成图片,可以使用下面方法生成海报,保存到手机,话不多说,上代码吧 HTML部分代码 <div class="dd"> <img src=&quo ...
- 传统 Web 框架部署与迁移
简介: 与其说 Serverless 架构是一个新的概念,不如说它是一种全新的思路,一种新的编程范式. 与其说 Serverless 架构是一个新的概念,不如说它是一种全新的思路,一种新的编程范式. ...
- DTCC 2020 | 阿里云梁高中:DAS之基于Workload的全局自动优化实践
简介: 第十一届中国数据库技术大会(DTCC2020),在北京隆重召开.在12.23日性能优化与SQL审计专场上,邀请了阿里巴巴数据库技术团队高级技术专家梁高中为大家介绍DAS之基于Workload的 ...
- [FAQ] 如何避免过度依赖百度, 甚至超越百度
查找信息,你不依赖百度,势必要依赖其它. 那么如何超越百度搜索,也必须要站在巨人的肩膀上. 搜索市场已有不少巨头,最简单的超越办法是:站在所有巨人的肩膀上. Other:搜索的超越 Link:http ...
- dotnet 启动进程传入不存在的文件夹作为工作目录行为变更
本文记录在 dotnet 下,启动进程,传入不存在的文件夹作为进程的工作目录,分别在 .NET Framework 和 .NET Core 的行为 在 dotnet 6 下,可以使用 ProcessS ...
- Quartus prime 的安装步骤:
- 如何对一个新的 VSCode 配置 LaTeX
texlive 的安装件参考资料 [1]. 往 VSCode 里面装 LaTeX Workshop 插件,也可以直接搜 James-Yu.latex-workshop. Ctrl+Shift+P 打开 ...