题目


分析

由于\(a_i=1或2\)时\(d(a_i)=a_i\),且其余情况修改后答案只会越来越小,

考虑用树状数组维护区间和,用并查集跳过\(a_i=1或2\)的情况


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=1000011,M=300011;
typedef long long lll;
int n,m,a[M],f[M],Cnt; lll c[M];
int prime[M],d[N],mc[N]; bool v[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(lll ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void Pro(int n){
d[1]=1,mc[1]=1;
for (rr int i=2;i<=n;++i){
if (!v[i]) prime[++Cnt]=i,d[i]=mc[i]=2;
for (rr int j=1;j<=Cnt&&prime[j]<=n/i;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0){
mc[i*prime[j]]=mc[i]+1;
d[i*prime[j]]=d[i]/mc[i]*(mc[i]+1);
break;
}
mc[i*prime[j]]=2,
d[i*prime[j]]=d[i]<<1;
}
}
}
inline signed getf(int u){return f[u]==u?u:f[u]=getf(f[u]); }
inline void update(int x,int y){for (;x<=n;x+=-x&x) c[x]+=y;}
inline lll query(int l,int r){
rr lll ans=0; --l;
for (;r>l;r-=-r&r) ans+=c[r];
for (;l>r;l-=-l&l) ans-=c[l];
return ans;
}
signed main(){
n=iut(),m=iut(),Pro(N-11),f[n+1]=n+1;
for (rr int i=1;i<=n;++i) c[i]=c[i-1]+(a[i]=iut());
for (rr int i=n;i;--i) f[i]=i,c[i]-=c[i&(i-1)];
for (rr int z,l,r;m;--m){
z=iut(),l=iut(),r=iut();
if (z==2) print(query(l,r)),putchar(10);
else for (rr int i=getf(l);i<=r;){
update(i,d[a[i]]-a[i]),a[i]=d[a[i]];
f[i]=i+(a[i]<3),i=(getf(i)==i)?i+1:f[i];
}
}
return 0;
}

#树状数组,并查集#CF920F SUM and REPLACE的更多相关文章

  1. [BZOJ3038]上帝造题的七分钟2 树状数组+并查集

    考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方 ...

  2. BZOJ 3211 花神游历各国 (树状数组+并查集)

    题解:首先,单点修改求区间和可以用树状数组实现,因为开平方很耗时间,所以在这个方面可以优化,我们知道,开平方开几次之后数字就会等于1 ,所以,用数组记录下一个应该开的数,每次直接跳到下一个不是1的数字 ...

  3. BZOJ3211 花神游历各国 【树状数组 + 并查集】

    题目 输入格式 输出格式 每次x=1时,每行一个整数,表示这次旅行的开心度 输入样例 4 1 100 5 5 5 1 1 2 2 1 2 1 1 2 2 2 3 1 1 4 输出样例 101 11 1 ...

  4. [BZOJ3211]花神游历各国&&[BZOJ3038] 上帝造题的七分钟2 树状数组+并查集

    3211: 花神游历各国 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 4057  Solved: 1480[Submit][Status][Discu ...

  5. CodeVS2492 上帝造题的七分钟2(树状数组+并查集)

    传送门 树状数组模板题.注意优化,假设某个数的值已经是1了的话.那么我们以后就不用对他进行操作了,这个能够用并查集实现. 这道题还有个坑的地方,给出查询区间端点的a,b,有可能a>b. #inc ...

  6. POJ 2985 The k-th Largest Group(树状数组 并查集/查找第k大的数)

    传送门 The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8690   Acce ...

  7. luogu 4145 花神游历各国 线段树/树状数组+并查集

    此题一看便是RMQ问题,但是由于开平方的特殊操作,tag操作失效 此时发现特性:sqrt最多执行6此便使值到达1/0,此时可以剪枝不进行该操作,利用并查集到达特性找根,根代表还可以进行操作的点,再利用 ...

  8. SPOJ GSS4 Can you answer these queries IV ——树状数组 并查集

    [题目分析] 区间开方+区间求和. 由于区间开方次数较少,直接并查集维护下一个不是1的数的位置,然后暴力修改,树状数组求和即可. 这不是BZOJ上上帝造题7分钟嘛 [代码] #include < ...

  9. BZOJ 3038 上帝造题的七分钟2 树状数组+并查集

    题目大意:一个序列,有两种操作.1.将一段数中的每个数开根号.2.查询一段数的和. 思路:和3211是一个题,有兴趣的能够看看我的那篇博客. CODE: #include <cmath> ...

  10. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

随机推荐

  1. .Net 6 WebAPI 使用JWT进行 授权认证配置

    .Net 6 WebAPI 使用JWT进行 授权认证 1.安装组件(Nuget) Microsoft.AspNetCore.Authentication.JwtBearer 2.Program.cs ...

  2. MYSQL查询数据表中某个字段包含某个数值

    当某个字段中字符串是"1,2,3,4,5,6"或者"123456"查询数据表中某个字段是否包含某个值1:模糊查询  使用like       select * ...

  3. typing的中的Optional说明

    from typing import Optional def show_count(count: int, singular: str, plural: Optional[str] = None) ...

  4. java个人博客

    效果浏览 首页 详情页 Aboutme 后台管理 管理/添加博客 添加分类 管理员管理 友情链接 访问地址 前台地址http://localhost 后台地址:http://localhost/adm ...

  5. 领略一下swift函数派发机制流程

    函数派发 Swift中函数的派发机制有三种:静态派发,函数表派发,消息派发. 静态派发 静态派发是指在运行时不需要查表,直接跳转到方法进行执行.静态派发的性能也是最高的.c语言采用的是直接派发. 函数 ...

  6. OFDM系统各种QAM调制阶数在多径信道下的误码性能仿真(暂存版本)

    本文考虑OFDM系统在多径信道下的误码性能 代码 clc;close all;clear %% Seting parameters EbN0_list = 20:2:40; Q_order_list ...

  7. HAProxy端口资源耗尽的解决办法

    项目背景 系统使用HAProxy为mq和部分应用的负载均衡服务.近期,瞬时流量过大,导致出现连锁反应,HA开始波动. HAProxy版本:1.6.3 问题分析 心跳检测大量失败,项目状态极不稳定.观察 ...

  8. 代码随想录算法训练营第三十天| 51. N皇后 37. 解数独 总结

           卡哥建议:今天这三道题都非常难,那么这么难的题,为啥一天做三道? 因为 一刷 也不求大家能把这么难的问题解决,所以 大家一刷的时候,就了解一下题目的要求,了解一下解题思路,不求能直接写出 ...

  9. PHP项目&RCE安全&调试&追踪&代码执行&命令执行

    常见漏洞关键字 SQL注入:select.insert.update.mysql_query.mysqli等 文件上传:$_FILES.type="file".上传.move_up ...

  10. POM模式核心思想?

    对页面元素进行封装为类的属性 对用例执行流程设计成类的实例方法 通过定义好的页面类实例化一个对象,通过对象调用实例方法执行用例 核心作用: 可以较少代码的冗余,方便后面维护,如果页面元素发生改变, 只 ...