#直径,线段树#51nod 1766 树上的最远点对
题目
多组询问,在 \([a,b]\) 和 \([c,d]\) 中分别选一个点 \(x,y\) ,使得 \(dis(x,y)\) 最大
分析
考虑直径的一个性质,两个点集两条直径的四个端点可能成为合并后点集的直径,
用线段树维护区间直径询问时合并即可,LCA可以用dfs序 \(O(1)\) 询问
代码
#include <cstdio>
#include <cctype>
using namespace std;
const int N=100011; struct node{int y,w,next;}e[N<<1];
struct rec{int x,y;}w[N<<2];
int dep[N],dis[N],f[N<<1][18],two[18],lg[N<<1],dfn[N],as[N],n,tot,et=1;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int max(int a,int b){return a>b?a:b;}
void dfs(int x,int fa){
dep[x]=dep[fa]+1,f[dfn[x]=++tot][0]=x;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dis[e[i].y]=dis[x]+e[i].w;
dfs(e[i].y,x),f[++tot][0]=x;
}
}
int Get_Min(int x,int y){return dep[x]<dep[y]?x:y;}
int lca(int x,int y){
int l=dfn[x],r=dfn[y];
if (l>r) l^=r,r^=l,l^=r;
int z=lg[r-l+1];
return Get_Min(f[l][z],f[r-two[z]+1][z]);
}
int Dis(int x,int y){return dis[x]+dis[y]-2*dis[lca(x,y)];}
rec pup(rec A,rec B){
rec t=A; int d=Dis(A.x,A.y),now;
now=Dis(B.x,B.y); if (now>d) d=now,t=B;
now=Dis(A.x,B.x); if (now>d) d=now,t=(rec){A.x,B.x};
now=Dis(A.x,B.y); if (now>d) d=now,t=(rec){A.x,B.y};
now=Dis(A.y,B.x); if (now>d) d=now,t=(rec){A.y,B.x};
now=Dis(A.y,B.y); if (now>d) d=now,t=(rec){A.y,B.y};
return t;
}
void build(int k,int l,int r){
if (l==r){
w[k]=(rec){l,l};
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=pup(w[k<<1],w[k<<1|1]);
}
rec query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
int mid=(l+r)>>1;
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else return pup(query(k<<1,l,mid,x,mid),query(k<<1|1,mid+1,r,mid+1,y));
}
int main(){
n=iut(),lg[0]=-1,two[0]=1;
for (int i=1;i<18;++i) two[i]=two[i-1]<<1;
for (int i=1;i<n;++i){
int x=iut(),y=iut(),w=iut();
e[++et]=(node){y,w,as[x]},as[x]=et;
e[++et]=(node){x,w,as[y]},as[y]=et;
}
dfs(1,0);
for (int i=1;i<=tot;++i) lg[i]=lg[i>>1]+1;
for (int j=1;j<=lg[tot];++j)
for (int i=1;i+two[j]-1<=tot;++i)
f[i][j]=Get_Min(f[i][j-1],f[i+two[j-1]][j-1]);
build(1,1,n);
for (int Q=iut();Q;--Q,putchar(10)){
int lx=iut(),ly=iut(),rx=iut(),ry=iut(); rec tl=query(1,1,n,lx,ly),tr=query(1,1,n,rx,ry);
print(max(max(Dis(tl.x,tr.x),Dis(tl.x,tr.y)),max(Dis(tl.y,tr.x),Dis(tl.y,tr.y))));
}
return 0;
}
#直径,线段树#51nod 1766 树上的最远点对的更多相关文章
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- 51Nod 1766 树上的最远点对
Description 一棵树,询问两个端点编号分别在在 \([a,b]\) 和 \([c,d]\) 两个区间中的最长链. Sol 线段树+ST表. 树上最长链可以合并,只需要合并两个区间最长链的两个 ...
- 51nod 1766 树上的最远点对(线段树)
像树的直径一样,两个集合的最长路也是由两个集合内部的最长路的两个端点组成的,于是我们知道了两个集合的最长路,枚举一下两两端点算出答案就可以合并了,所以就可以用线段树维护一个区间里的最长路了. #inc ...
- 51nod 1766 树上的最远点对——线段树
n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j& ...
- 【树形结构】51nod 1766 树上的最远点对
题目内容 \(n\)个点被\(n−1\)条边连接成了一颗树,边有权值\(w_i\).有\(q\)个询问,给出\([a,b]\)和\([c,d]\)两个区间,表示点的标号请你求出两个区间内各选一点之间的 ...
- 51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
- 【做题】51Nod1766树上的最远点对——直径&线段树
原文链接 https://www.cnblogs.com/cly-none/p/9890837.html 题意:给出一棵大小为\(n\)的树,边有边权.\(m\)次询问,每次给出两个标号区间\([a, ...
- 【51nod】1766 树上的最远点对
[题意]给定n个点的树,m次求[a,b]和[c,d]中各选出一个点的最大距离.abcd是标号区间,n,m<=10^5 [算法]LCA+树的直径理论+线段树 [题解] 树的直径性质:距离树上任意点 ...
随机推荐
- 【Android逆向】脱壳项目frida_dump 原理分析
脱dex核心文件dump_dex.js 核心函数 function dump_dex() { var libart = Process.findModuleByName("libart.so ...
- 运用 Argo Workflows 协调 CI/CD 流水线
Argo Workflows 是一个开源的容器原生工作流引擎,用于协调 CI/CD 在 Kubernetes 中的运作.它以 Kubernetes 自定义资源(CRD)的形式实现,使开发人员能够创建自 ...
- render_to_string快捷函数,渲染模板字符串
# views.py from django.template.loader import render_to_string from django.http import HttpResponse ...
- drf中认证源码流程
drf中认证流程 首先通过导入from rest_framework.views import APIView,然后通过ctrl+鼠标右键进入到APIView类中,apiview中定义了许多方法,我们 ...
- 【Azure Redis 缓存】Redis性能指标之Server Load
Server Load描述 在Redis的官方介绍中,Server Load指标是Redis 服务器忙于处理消息并且非空闲等待消息的周期百分比. 如果此计数器达到 100,则意味着 Redis 服务器 ...
- SpringCloud Hystrix断路器的基本使用
官网资料: https://github.com/Netflix/Hystrix/wiki/How-To-Use 1. 服务雪崩 分布式系统面临的问题 复杂分布式体系结构中的应用程序有数十个依赖关系, ...
- C++ //常用查找算法 find //自定义类型需要重载 ==
1 //常用查找算法 find 2 #include<iostream> 3 #include<algorithm> 4 #include<functional> ...
- Prometheus技术分享——prometheus的函数与计算公式详解
Prometheus与zabbix相比,它的强大之处就在于可以它可以使用的很多计算公式去获取自己需要的数据.当然,这里所涉及到的计算公式,也是我们普遍认为的难点所在.比如,我们要获取CPU使用率,使用 ...
- zabbix“专家坐诊”第178期问答汇总
大家好,我是乐乐.早在三年前,我们就在社区举办了zabbix公益问答活动,并且定在每周三邀请资深的zabbix技术工程师,为社群的小伙伴进行免费的答疑.到现在已经178期了.后续我将会把每期的答疑汇总 ...
- vscode 创建 git tag,并推送到远程
Step. 1: 创建tag 左侧 源代码管理 右上角 ... 标记 -> 创建标记 输入tag名称 回车 输入tag描述 Step. 2: 查看tag 使用命令 git tag 查看当前所有的 ...