5.1 The Properties of Determinants

  1. The determinant of the n by n identity matrix is 1 : \(det I = 1\).

  2. The determinant changes sign when two rows are exchanged(sign reversal) : \(det P = \pm 1\) (det P = +1 for an even number of row exchange and det P = -1 for an odd number.)

  3. The determinant is linear function of each row separately :

    • 3a : multiply row i for any number t det is multiplied by t : \(\left[ \begin{matrix} ta&tb \\ c&d \end{matrix} \right] = t\left| \begin{matrix} a&b \\ c&d \end{matrix} \right|\)
    • 3b: add row i of A to row i of A' then determinants add : \(\left[ \begin{matrix} a+a'&b+b' \\ c&d \end{matrix} \right] = \left| \begin{matrix} a&b \\ c&d \end{matrix} \right| + \left| \begin{matrix} a'&b' \\ c&d \end{matrix} \right|\)

    From rules 1-3 we will reach rules 4-10.

  4. If two rows of A are equal, the det A = 0.

  5. Subtracting a multiple of one row from another row leaves det A unchanged. ( eliminaton steps doesn't change determinant : det A = det D, without row exchanges.)

  6. A matrix with a row of zeros has det A = 0.

  7. If A is triangular then \(det A = a_{11}a_{22}...a_{nn}\)=product of diagnonal entries.

  8. If A is singular then det A = 0. If A is invertible then \(det A \neq 0\).

  9. The determinant of AB is det A times det B : \(|AB| = |A||B|\) .

  10. The transpose \(A^T\) has the same determinant as A: \(det A^T = det A\).

    • A zero column will make the det A = 0.
    • Two equal columns will make the det A = 0.
    • If a column is multiplied by t, so is the determinant.

5.2 Three Formula for Determinant

The Pivot Formula

When elimination leads to \(A=LU\), the pivots \(d_1,d_2,...,d_n\) are on the diagonal of the upper triangular U.

No row exchanges: \(det A = (det L)(det U)=(1)(d_1d_2...d_n)\)

Row exchanges: \((detP)(detA)= (detL)(detU)\) gives \(detA = \pm(d_1d_2...d_n)\) , odd leads to minus(-), even leads to plus(+)

The Big Formula

The big formula has n! terms.

\[det A = \sum(detP)a_{1\alpha}a_{1\beta}...a_{n\omega}
\]

example:

\[\left| \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right| =
\left| \begin{matrix} a_{11}&&\\ &a_{22}& \\ &&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ &&a_{23} \\ a_{31}&& \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ a_{21}&& \\ &a_{32}& \\\end{matrix} \right| +\\
\quad \quad \quad \quad \quad \quad \quad \quad
\left| \begin{matrix} a_{11}&&\\ &&a_{23} \\ &a_{32}& \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ a_{21}&& \\ &&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ &a_{22}& \\ a_{31}&& \\\end{matrix} \right| + \\
\Downarrow \\
det A = a_{11}a_{22}a_{33}\left| \begin{matrix} 1&&\\ &1& \\ &&1\\\end{matrix} \right| + a_{12}a_{23}a_{31}\left| \begin{matrix} &1&\\ &&1 \\ 1&&\\\end{matrix} \right| +
a_{13}a_{21}a_{32}\left| \begin{matrix} &&1\\ 1&& \\ &1&\\\end{matrix} \right| + \\
\quad \quad \quad
a_{11}a_{23}a_{32}\left| \begin{matrix} 1&&\\ &&1 \\ &1&\\\end{matrix} \right| +
a_{12}a_{21}a_{33}\left| \begin{matrix} &1&\\ 1&& \\ &&1\\\end{matrix} \right| +
a_{13}a_{22}a_{31}\left| \begin{matrix} &&1\\ &1& \\ 1&&\\\end{matrix} \right| \\
\quad \quad \quad
=a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +
a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32} -
a_{12}a_{21}a_{33} -
a_{13}a_{22}a_{31}
\]

The Cofactors Formula

The determinant is the dot product of any row i of A with its cofactors using other rows:

\[det A = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}
\]

Each cofactor \(C_{ij}\) (order n-1, without row i and column j) includes its correct sign:

\[C_{ij} = (-1)^{i + j} det M_{i+j}
\]

example:

\[\left| \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right| =
\left| \begin{matrix} a_{11}&&\\ &a_{22}&a_{23} \\ &a_{32}&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ a_{21}&&a_{23} \\ a_{31}&&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ a_{21}&a_{22}& \\ a_{31}&a_{32}& \\\end{matrix} \right|
\]
\[C_{11} = a_{22}a_{33}-a_{23}a_{32} \\
C_{12} = -(a_{21}a_{33}-a_{23}a_{31}) \\
C_{13} = a_{21}a_{32}-a_{22}a_{31}
\]

5.3 Inverse\ Cramer's Rule\ Volumn of box

Formula for \(A^{-1}\)

The i, j entry of \(A^{-1}\) is the cofactor \(C_{ji}\) divided by det A:

\[(A_{ij}^{-1}) = \frac{C_{ji}}{det A} \\
A^{-1} = \frac {C^T}{detA}
\]

proof :

\[A^{-1} = \frac {C^T}{detA} \\
\Uparrow \\
AC^T = (detA)I \\
\Uparrow \\

\left[ \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right]
\left[ \begin{matrix} C_{11}&C_{21}&C_{31}\\ C_{12}&C_{22}&C_{32} \\ C_{13}&C_{23}&C_{33} \\\end{matrix} \right] =
\left[ \begin{matrix} detA&0&0\\ 0&detA&0 \\ 0&0&detA \\\end{matrix} \right]
\]

Cramer's Rule

If det A is not zero, Ax=b is solved by determinants:

\[x_1 = \frac{det B_1}{detA} , x_2 = \frac{det B_2}{detA}, \cdots, x_n = \frac{det B_n}{detA}
\]

The matrix \(B_j\) has the jth column of A replaced by the vector b.

example:

\[Solve \quad Ax = (1,0,0) \\
det B_1 = \left| \begin{matrix} 1&a_{12}&a_{13}\\ 0&a_{22}&a_{23} \\ 0&a_{32}&a_{33} \\\end{matrix} \right| \\
det B_2 =\left| \begin{matrix} a_{11}&1&a_{13}\\ a_{21}&0&a_{23} \\ a_{31}&0&a_{33} \\\end{matrix} \right| \\
det B_3 =\left| \begin{matrix} a_{11}&a_{12}&1\\ a_{21}&a_{22}&0\\ a_{31}&a_{32}&0 \\\end{matrix} \right|
\]

Volumn of box

The volume equals the absolute value of det A.

Area of Parallelogram and Triangle

Determinants are the best way to find area.

Area of Parallelogram : \(Area = Determinant\)

Area of Triangle: \(Area = Determinant / 2\)

When an edge is stretched by a factor t, the volume is multiplied by t. (Rule 3a)

When edge 1 is added to edge 1', the volume is the sum of the two original volumes.(Rule 3b)

5.4 Cross Product

The cross product of \(u=(u_1,u_2,u_3)\) and \(v=(v_1,v_2,v_3)\) is a vector.

\[u \times v = \left[ \begin{matrix} i&j&k \\ u_1&u_2&u_3 \\ v_1&v_2&v_3 \end{matrix} \right] = (u_2v_3-u_3v_2)i + (u_3v_1-u_1v_3)j +(u_1v_2-u_2v_1)k
\]

The cross product is a vector with length \(||u|| \ \ ||v|| \ \ |sin\theta|\). Its direction is perpendicular to u and v.It points "up" or "down" by the right hand rule.

\[||u \times v|| =||u|| \ \ ||v||\ \ |sin\theta| \\ ( ||u \cdot v|| =||u|| \ \ ||v||\ \ |cos\theta| )
\]

5. Determinant的更多相关文章

  1. bzoj 2107: Spoj2832 Find The Determinant III 辗转相除法

    2107: Spoj2832 Find The Determinant III Time Limit: 1 Sec  Memory Limit: 259 MBSubmit: 154  Solved: ...

  2. SPOJ - DETER3:Find The Determinant III (求解行列式)

    Find The Determinant III 题目链接:https://vjudge.net/problem/SPOJ-DETER3 Description: Given a NxN matrix ...

  3. SPOJ - Find The Determinant III 计算矩阵的行列式答案 + 辗转相除法思想

    SPOJ -Find The Determinant III 参考:https://blog.csdn.net/zhoufenqin/article/details/7779707 参考中还有几个关于 ...

  4. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

  5. 2017湘潭赛 A题 Determinant (高斯消元取模)

    链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...

  6. Linear Algebra - Determinant(几何意义)

    二阶行列式的几何意义 二阶行列式 \(D = \begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} = a_1b_2 - a_2b_1\) 的几何意 ...

  7. Linear Algebra - Determinant(基础)

    1. 行列式的定义 一阶行列式: \[ \begin{vmatrix} a_1 \end{vmatrix} = a_1 \] 二阶行列式: \[ \begin{vmatrix} a_{11} & ...

  8. The Evaluation of Determinant(求行列式mod一个数的值)

    #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #i ...

  9. 行列式(determinant)的物理意义及性质

    1. 物理(几何)意义 detA=output areainput area 首选,矩阵代表的是线性变换(linear transformation).上式说明一个矩阵的行列式(detA)几何意义上, ...

  10. SP1772 Find The Determinant II

    题意 \(T\) 组数据,每组给定两个整数 \(n,k\),求 \(\det A\),其中 \(A\) 为一个 \(n\times n\) 的矩阵且 \(A_{i,j}=\gcd(i,j)^k\),对 ...

随机推荐

  1. 第135篇:Three.js基础入门

    好家伙,这东西太帅了,我要学会   先放张帅图(都是用three.js做出来的,这我学习动力直接拉满)    还有另外一个 Junni is... 帧数太高,录不了   开始学习 官方文档 1.Thr ...

  2. signature hdr data: BAD, no. of btyes(9088) out of range 问题排查与解决方案

    在使用yum工具安装gcc的时候,报出了signature hdr data: BAD, no. of btyes(9088) out of range 的问题 这是由于centos8中rpm工具存在 ...

  3. 【Azure 应用服务】Python Function App重新部署后,出现 Azure Functions runtime is unreachable 错误

    问题描述 Python Function App重新部署后,出现 Azure Functions runtime is unreachable 错误 问题解答 在Function App的门户页面中, ...

  4. 【对比】Gemini:听说GPT-4你小子挺厉害

    前言 缘由 谷歌连放大招:Gemini Pro支持中文,Bard学会画画 事情起因: 一心只读圣贤书的狗哥,不经意间被新闻吸引.[谷歌最新人工智能模型Gemini Pro已在欧洲上市 将与ChatGP ...

  5. VC-MFC(1) 随笔笔记+连接数据库

    1 数据库语句: 2 CREATE DATABASE---创建新数据库 3 ALTER DATABASE-----修改数据库 4 CREATE TABLE ---- -创建新表 5 ALTER TAB ...

  6. Java实现书城项目(增删)

    书城项目 登录 dao 接口:UserDao Users login(String username,String password); 实现:UserDaoImpl QueryRunner quer ...

  7. 开源好用的所见即所得(WYSIWYG)编辑器:Editor.js

    @ 目录 特点 基于区块 干净的数据 界面与交互 插件 标题和文本 图片 列表 Todo 表格 使用 安装 创建编辑器实例 配置工具 本地化 自定义样式 今天介绍一个开源好用的Web所见即所得(WYS ...

  8. 动态less 解决 vue main.js

    // 引入主题文件 // eslint-disable-next-line no-unused-expressions import('./theme/color/' + config.theme + ...

  9. C++ 赋值运算符和拷贝构造函数

    拷贝构造函数 class Foo{ public: Foo(); Foo(const Foo&); //自己定义的拷贝构造函数 }; 如果不自己定义,编译器会自己合成一个默认拷贝构造函数: c ...

  10. [转载]Linux根据关键词查找文件/函数/结构体命令整理

    本文来自博客园,作者:Jcpeng_std,转载请注明原文链接:https://www.cnblogs.com/JCpeng/p/15077235.html 一.查找文件 使用 Linux 经常会遇到 ...