SPSS统计教程:卡方检验
本文简要的介绍了卡方分布、卡方概率密度函数和卡方检验,并通过SPSS实现了一个卡方检验例子,不仅对结果进行了解释,而且还给出了卡方、自由度和渐近显著性的计算过程。本文用到的数据"2.2.sav"链接为: https://url39.ctfile.com/f/2501739-875711187-f3dbb8?p=2096 (访问密码: 2096)
一.卡方分布
卡方分布是一种概率分布,若\(k\)个随机变量\(Z_1、......、Z_k\)是相互独立且符合标准正态分布的随机变量(数学期望为0、方差为1),那么随机变量\(Z\)的平方和\(X = \sum\limits_{i = 1}^k {Z_i^2}\)被称为服从自由度为\(k\)的卡方分布,记作:\(X \sim {\chi ^2}\left( k \right)\)。
二.卡方概率密度函数
卡方分布的概率密度函数为:
\]
其中,\(x \ge 0\),当\(x \le 0\)时\({f_x}\left( x \right) = 0\),\(\Gamma\)表示Gamma函数。
不同自由度情况下的卡方分布概率密度曲线图:
随着自由度\(k\)的增加,曲线逐渐趋于对称。当自由度\(k\)趋近于无穷时,卡方分布趋近正态分布。
三.卡方检验
卡方检验是非参数检验,以卡方分布为理论依据的假设检验方法,基本原理是通过样本的频数分布来推断总体是否服从某种理论分布。卡方检验的原假设为:样本所属总体的分布与理论分布之间不存在显著差异。卡方检验的检验统计量方程为:
\]
\(\chi ^2\)统计量在大样本条件下逐渐服从自由度为\(k-1\)的卡方分布,\(M_{oi}\)表示观测频数,\(M_{ei}\)表示理论频数。\({\chi ^2}\)统计量越小,表示观测频数与理论频数越接近。如果小于由显著性水平和自由度确定的临界值,那么认为样本所属的总体分布与理论分布无显著差异。
四.卡方检验例子
实验目的:想知道不同年龄组的样本个数是否存在显著差异。如果\(p>0.05\),那么接受原假设,即不同年龄组的样本个数并不存在显著不同。
变量视图如下所示:
数据视图如下所示:
分析->非参数检验->旧对话框->卡方:
卡方检验结果如下所示:
重点说明下卡方、自由度和渐近显著性是如何计算的:
1.卡方计算
\]
2.自由度计算
\(k-1\),\(k\)表示分类变量数。
3.渐近显著性计算
渐近显著性就是\(p\)值,\(p=1-F(卡方值,自由度)\)。使用Python代码计算:
from scipy.stats import chi2
# 第1个参数表示卡方值,第2个参数表示自由度
p = 1 - chi2.cdf(0.68, 3)
print(p) # 0.8778977619609463
在平时看的医学论文中,比较常见的场景是根据卡方检验来计算患者组和对照组的性别是否具有显著性差异:
参考文献:
[1]卡方分布:https://zh.wikipedia.org/zh-hans/卡方分布
[2]《SPSS统计分析入门与应用精解》
[3]卡方检验:https://www.ibm.com/docs/zh/spss-statistics/28.0.0?topic=tests-chi-square-test
[4]数据2.2.sav: https://url39.ctfile.com/f/2501739-875711187-f3dbb8?p=2096 (访问密码: 2096)
SPSS统计教程:卡方检验的更多相关文章
- SPSS详细教程:OR值的计算
SPSS详细教程:OR值的计算 一.问题与数据 研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异.研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐 ...
- SPSS实例教程:多重线性回归,你用对了么
SPSS实例教程:多重线性回归,你用对了么 在实际的医学研究中,一个生理指标或疾病指标往往受到多种因素的共同作用和影响,当研究的因变量为连续变量时,我们通常在统计分析过程中引入多重线性回归模型,来分析 ...
- SPSS统计功能与模块对照表
SPSS统计功能 - 应用速查表第一列为统计方法,中间为统计功能,最后一列为所在模块 1 ANOVA Models(单因素方差分析:简单因子) : 摘要 描述 方差 轮廓 - SPSS Base 2 ...
- 因子分析spss怎么做 spss因子分析教程及结果解释
因子分析spss怎么做 spss因子分析教程及结果解释 因子分析spss可以简化数据结构,将具有错综复杂关系的变量综合为数据较少的因子,在信息损失最小的情况下对变量进行分类,不过有些朋友多spss因子 ...
- SPSS 统计图形
统计图能够简洁.直观地对主要的数据信息进行呈现,反映事物内在的规律和关联.当然难免会丢失数据的细节,鱼与熊掌不可兼得. 根据统计图呈现变量的数量将其分为单变量图.双变量图.多变量图,然后再根据测试尺度 ...
- spss C# 二次开发 学习笔记(六)——Spss统计结果的输出
Spss的二次开发可以很简单,实例化一个对象,然后启用服务,接着提交命令,最后停止服务. 其中重点为提交命令,针对各种统计功能需求,以及被统计分析的数据内容等,命令的内容可以很复杂,但也可以简单的为一 ...
- SPSS python教程:[1]安装Python Essentials
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
- Spss统计描述分析
总觉得有些技能学会了是不会忘的,但是还是要记录一下,怕记忆力不像狗皮膏药,并不那么牢固. 1.文件的合并 两个数据文件的合并 点击添加个案,这一步按照自己的需求选择,也可以打开外部数据集,在这里打开的 ...
- SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf- ...
- SPSS教程学习笔记1:K个独立样本秩和检验及多重比较 (转载) (非参数假设检验)
本文地址:http://www.datasoldier.net/archives/173版权声明:本文为原创文章,版权归 数据小兵 所有,欢迎分享本文,转载请保留出处! 方差分析经常会出现不满 ...
随机推荐
- Sevlet规范:HttpServlet类 和 HttpServletRequest接口 源码解析
Sevlet规范:HttpServlet类 和 HttpServletRequest接口 源码解析 每博一文案 命运总是不如人愿,但往往是在无数的痛苦总,在重重的矛盾和艰辛中,才是人成熟起来. 你,为 ...
- 正态分布密度函数的动画演示—R语言
正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布.一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标 ...
- kubernetes (k8s) v1.24.0 安装dashboard面板
kubernetes (k8s) v1.24.0 安装dashboard面板 介绍 v1.24.0 使用之前的安装方式,在安装过程中会有一些异常,此文档已修复已知问题. 下载所需配置 root@k8s ...
- 异常:java.io.FileNotFoundException:e:\demo(拒绝访间。)
禁止向目录中写数据,只能向文件写数据
- STM32新建模板【HAL库】
看到这篇笔记的小伙伴可能会觉得我在做无用功,明明可以通过 STM32CubeMx 软件直接生成的,还在这里慢慢的创建项目.我觉得在学习的时候最好少借助工具,当我们过度依赖工具的时候,决绝问题的能力可能 ...
- 去掉Bom头的方法和为什么要清除Bom头
什么是bom头? 在utf-8编码文件中BOM在文件头部,占用三个字节,用来标示该文件属于utf-8编码,现在已经有很多软件识别bom头,但是还有些不能识别bom头,比如PHP就不能识别bom头,这也 ...
- 实现声明式锁,支持分布式锁自定义锁、SpEL和结合事务
目录 2.实现 2.1 定义注解 2.2 定义锁接口 2.3 锁的实现 2.3.1 什么是SPI 2.3.2 通过SPI实现锁的多个实现类 2.3.3 通过SPI自定义实现锁 3.定义切面 3.1 切 ...
- Gateway服务网关+过滤器
为什么需要网关 Gateway网关是我们服务的守门神,所有微服务的统一入口. 网关的核心功能特性: 请求路由 权限控制 限流 架构图: 权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果 ...
- [Opencv-C++] 3. opencv数据类型
文章目录 Point类 cv::Scalar类 size类 cv::Rect类 cv::RotatedRect类 固定矩阵类 固定向量类 复数类 工具函数 模板结构 Point类 在大多数程序中,Po ...
- mac 如何快捷键打开当前文件夹对应的终端窗口