【scikit-learn基础】--『监督学习』之 贝叶斯分类
贝叶斯分类是一种统计学分类方法,基于贝叶斯定理,对给定的数据集进行分类。
它的历史可以追溯到18世纪,当时英国统计学家托马斯·贝叶斯发展了贝叶斯定理,这个定理为统计决策提供了理论基础。
不过,贝叶斯分类在实际应用中的广泛使用是在20世纪80年代,当时计算机技术的进步使得大规模数据处理成为可能。
1. 算法概述
贝叶斯分类基于贝叶斯公式,通过已知样本信息来计算未知样本属于各个类别的概率,然后选择概率最大的类别作为未知样本的分类结果。
贝叶斯公式的简化公式:\(P(A|B) = \frac{P(B|A)P(A)}{P(B)}\)
其中:
- \(P(A)\):事件A发生的概率
- \(P(B)\):事件A发生的概率
- \(P(A|B)\):在事件B出现的前提下,A发生的概率
- \(P(B|A)\):在事件A出现的前提下,B发生的概率
贝叶斯分类就是基于这个公式扩展而来。
比如,一个具有\(n\)个特征的样本\(x = (x_1, x_2, ..., x_n)\),该样本属于K个可能的类别\(y_1,y_2,...,y_k\)。
那么,任一个样本\(x\)属于某个类别\(y_k\)的概率为:\(P(y_k|x) = \frac{P(X|y_k)P(y_k)}{P(x)}\)
根据这个模型,训练样本之后,就可以根据模型来预测某个样本属于哪个类别的概率最大。
这里讨论的贝叶斯分类算法,并没有考虑特征之间的关联关系,我们假设每个特征之间是相互独立的。
所以,这个算法也叫做朴素贝叶斯分类。
2. 创建样本数据
贝叶斯分类可以
这次用scikit-learn
中的样本生成器make_classification
来生成分类用的样本数据。
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
# 分类数据的样本生成器
X, y= make_classification(n_samples=1000, n_classes=4, n_informative=3)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)
plt.show()
关于样本生成器的详细内容,请参考:TODO
3. 模型训练
训练之前,为了减少算法误差,先对数据进行标准化处理(将数据缩放到0~100
之间)。
from sklearn import preprocessing as pp
# 数据标准化
X = pp.minmax_scale(X, feature_range=(1, 100))
y = pp.minmax_scale(y, feature_range=(1, 100))
然后,分割训练集和测试集。
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
按照8:2的比例来划分训练集和测试集。
scikit-learn
中的朴素贝叶斯算法支持多种不同的分类器,
这些分类器基于不同的先验概率分布,适用于不同的数据类型和问题场景。
我们训练模型的时候要根据数据情况选择合适的分类器。
from sklearn.naive_bayes import (
GaussianNB,
MultinomialNB,
ComplementNB,
BernoulliNB,
CategoricalNB,
)
reg_names = [
"高斯朴素贝叶斯",
"多项式朴素贝叶斯",
"补码朴素贝叶斯",
"伯努利朴素贝叶斯",
"分类朴素贝叶斯",
]
# 定义
regs = [
GaussianNB(),
MultinomialNB(),
ComplementNB(),
BernoulliNB(),
CategoricalNB(min_categories=101),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
各个分类器的简要说明:
- GaussianNB:基于高斯分布的朴素贝叶斯分类器。它假设每个特征服从高斯分布,即正态分布。这种分类器适用于连续型数据,特别是对于数值型特征。
- MultinomialNB:基于多项式分布的朴素贝叶斯分类器。它假设每个特征服从多项式分布,适用于离散型数据,特别是对于类别型特征。
- ComplementNB:基于互补分布的朴素贝叶斯分类器。它适用于离散型数据,特别是对于二元分类问题。
- BernoulliNB:基于伯努利分布的朴素贝叶斯分类器。它适用于二元分类问题,特别是对于二元特征或者二元输出。
- CategoricalNB:基于分类分布的朴素贝叶斯分类器。它适用于离散型数据,特别是对于类别型特征。
最后验证各个分类器的模型的训练效果:
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("【{}】 预测正确率:{:.2f}%".format(reg_names[i],
correct_pred / len(y_pred) * 100))
# 运行结果
【高斯朴素贝叶斯】 预测正确率:82.50%
【多项式朴素贝叶斯】 预测正确率:75.00%
【补码朴素贝叶斯】 预测正确率:72.50%
【伯努利朴素贝叶斯】 预测正确率:22.00%
【分类朴素贝叶斯】 预测正确率:50.50%
这里虽然高斯朴素贝叶斯分类器的正确率最高,但不能就认为这种分类器是最好的。
只能说明高斯朴素贝叶斯分类器最适合分类上面随机生成的样本数据。
换成其他的样本数据,高斯朴素贝叶斯分类器的正确率就不一定是最高的了。
4. 总结
总的来说,贝叶斯分类是一种有效的分类方法,适用于对未知样本进行分类的问题。
它的应用范围广泛,可以处理多分类问题,也可以用于连续变量的分类。
贝叶斯分类算法的主要优势在于:
- 是一种概率模型,可以给出分类结果的概率,因此更加可靠和稳定。
- 可以处理多分类问题,也可以用于连续变量的分类。
- 实现相对简单,可以在较短的时间内训练出模型并进行预测。
贝叶斯分类算法也有其不足之处:
- 假设所有特征之间相互独立,但在实际应用中这个假设往往不成立,因此会影响分类结果的准确性。
- 对于大规模的数据集,训练时间和预测时间可能会较长。
- 对于数据的缺失和异常值处理不够鲁棒,可能会对分类结果产生影响。
【scikit-learn基础】--『监督学习』之 贝叶斯分类的更多相关文章
- Python基础『一』
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...
- Python基础『二』
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...
- 『cs231n』计算机视觉基础
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装
[原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『TensorFlow』批处理类
『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...
- 『TensorFlow』梯度优化相关
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...
- 『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...
- 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支
下图Github地址:Mask_RCNN Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...
随机推荐
- 使用SemanticKernel 进行智能应用开发(2023-10更新)
以OpenAI 的ChatGPT 所掀起的GenAI 快速创新浪潮,其中连接LLM 和 应用之间的桥梁的两大开源项目:LangChain[1]和Semantic Kernel[2] ,在半年前写过一篇 ...
- u-boot启动流程
U-Boot(Universal Bootloader)是一个通用的开源引导加载程序,通常用于嵌入式系统中,负责引导操作系统或加载 Linux 内核等任务.U-Boot的启动流程可以概括为以下几个关键 ...
- 第五周单元测验题英语教学与互联网 mooc
第五周单元测验题 返回 本次得分为:16.00/20.00, 本次测试的提交时间为:2020-08-30, 如果你认为本次测试成绩不理想,你可以选择 再做一次 . 1 单选(2分) 从评价的主体来看, ...
- WPF 中引入依赖注入(.NET 通用主机)
WPF 中引入依赖注入(.NET 通用主机) 在网上看到的文章都是通过 App.cs 中修改配置进行的,这样侵入性很高而且服务主机是通过 App 启动时加载的而不是服务主机加载的 App 有一点违反原 ...
- CF1676G
题目简化和分析: 求一颗子树的黑白两数是否相等. 我们设黑 \(1\),白 \(-1\),若某一棵子树的权值为 \(0\),说明此刻的黑白个数相等,贡献加一. 从根搜索,每次将值传递给父亲,判断父亲此 ...
- CF276C
题目简化和分析: 属于一种贪心思维,我们想如果要使得和最大,那么就必须保证最大的数乘的次数越多越好,并且排序没有限制,快速累加每个位置出现的次数,所以应该使用线段树差分. 然后排序最大乘最大累加. S ...
- Kubernetes:kube-apiserver 之 scheme(一)
0. 前言 在进入 kube-apiserver 源码分析前,有一个非常重要的概念需要了解甚至熟悉的:资源注册表(scheme). Kubernetes 中一切皆资源,管理的是资源,创建.更新.删除的 ...
- K8s之MySQL实现数据持久化
这个是一个只写配置及验证的博文: 实现过程: 1. 搭建nfs存储 2. 创建PV 3. 确认PVC 4. 确认PV与PVC的状态 5. 创建pod+svc (service) 6. 进入MySQL数 ...
- PKUSC & GDCPC 2023 游记
离得太近,游记打算扔一起. 有没有神仙面基啊 /kel. PKUSC 2023 Day -? 突然听说不给 NOI Linux,震惊. 前情提要:在从 CSP 开始就全员强制 linux 的 LN 为 ...
- 如何在Excel中实现三联类模板?
本文由葡萄城技术团队原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 前言 在一些报表打印应用场景中,会有类似于如下图所示的排版格式: 一般情况下 ...