1. RNN(Recurrent Neural Network)

时间轴

1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。

关键技术

  • 循环结构
  • 序列处理
  • 长短时记忆网络(LSTM)和门控循环单元(GRU)

核心原理

RNN 通过循环结构让网络记住以前的输入信息,使其能够处理序列数据。每个节点不仅接收当前输入,还接收前一个节点的输出,从而形成记忆能力。

创新点

RNN 的创新点在于其循环结构,这使其能处理时间序列数据。但原始 RNN 容易出现梯度消失问题,后来的 LSTM 和 GRU 模型通过引入门控机制,极大地改善了这一问题。

适用数据

  • 时间序列数据
  • 语音信号
  • 文本数据

应用场景

  • 语言模型
  • 语音识别
  • 时间序列预测

经典案例

苹果的 Siri 和 Google 的语音助手都使用了基于 RNN 的技术来进行语音识别和处理。

2. CNN(Convolutional Neural Network)

时间轴

1989年,CNN 由 Yann LeCun 等人提出,主要用于图像处理。

关键技术

  • 卷积层
  • 池化层
  • 全连接层

核心原理

CNN 通过卷积层提取图像的局部特征,池化层进行降维处理,全连接层最终进行分类。卷积操作通过滤波器在图像上滑动,捕捉不同的特征。

创新点

CNN 的创新点在于卷积层的使用,使其能够有效提取图像的空间特征,大大减少了参数数量,提高了计算效率。

适用数据

  • 图像数据
  • 视频数据

应用场景

  • 图像分类
  • 物体检测
  • 图像生成

经典案例

LeNet-5 是最早的 CNN 之一,被用来进行手写数字识别,并取得了显著的成果。

3. Transformer

时间轴

2017年,Google 发布了 Transformer 模型,极大地提升了自然语言处理的效率。

关键技术

  • 自注意力机制
  • 编码器-解码器架构
  • 多头注意力机制

核心原理

Transformer 通过自注意力机制,可以在处理序列数据时并行计算,从而大大提升了效率。编码器处理输入序列,解码器生成输出序列,自注意力机制使得模型能够关注到序列中的重要信息。

创新点

Transformer 摒弃了传统 RNN 的循环结构,通过自注意力机制和并行处理,实现了更快的训练速度和更好的效果。

适用数据

  • 文本数据
  • 语言数据

应用场景

  • 机器翻译
  • 文本生成
  • 情感分析

经典案例

Google 的神经机器翻译系统(GNMT)使用了 Transformer 技术,实现了高质量的机器翻译。

4. BERT(Bidirectional Encoder Representations from Transformers)

时间轴

2018年,Google 发布了 BERT 模型,大大提升了自然语言处理任务的表现。

关键技术

  • 双向编码器
  • 预训练和微调
  • 掩码语言模型

核心原理

BERT 通过双向编码器同时考虑上下文信息,使用掩码语言模型在预训练阶段预测被掩盖的词语,然后进行任务特定的微调。

创新点

BERT 的创新在于其双向性和预训练方法,使得模型在各种 NLP 任务中都表现优异,尤其是在需要上下文理解的任务中。

适用数据

  • 文本数据

应用场景

  • 问答系统
  • 文本分类
  • 命名实体识别

经典案例

Google 搜索引擎在 2019 年开始使用 BERT 来理解用户查询,提高搜索结果的相关性。

5. GPT(Generative Pre-trained Transformer)

时间轴

2018年,OpenAI 发布了 GPT 模型,此后不断迭代,GPT-2 和 GPT-3 进一步提升了文本生成能力。

关键技术

  • 自回归语言模型
  • 预训练和微调
  • 大规模训练数据

核心原理

GPT 通过自回归方式生成文本,使用大量数据进行预训练,然后在特定任务上微调。模型基于 Transformer 架构,能够生成高质量的连贯文本。

创新点

GPT 的创新在于其生成能力和规模,通过预训练和大规模数据,能够生成自然流畅的文本,几乎达到人类水平。

适用数据

  • 文本数据

应用场景

  • 文本生成
  • 对话系统
  • 内容创作

经典案例

OpenAI 的 GPT-3 已经被广泛应用于各种文本生成任务,如代码生成、新闻撰写和对话机器人。以上便是 RNN、CNN、Transformer、BERT 和 GPT 五大深度学习模型的简介。它们各自在不同领域中展现了强大的能力和广泛的应用,推动了人工智能技术的发展和应用。

算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介的更多相关文章

  1. Deep Learning(深度学习)整理,RNN,CNN,BP

     申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎 ...

  2. 一文看懂AI深度学习丨曼孚科技

    深度学习(Deep Learning)是机器学习的一种,而机器学习是实现人工智能的必经途径. 目前大部分表现优异的AI应用都使用了深度学习技术,引领了第三次人工智能的浪潮. 一. 深度学习的概念 深度 ...

  3. 深度学习(一)——CNN算法流程

    深度学习(一)——CNN(卷积神经网络)算法流程 参考:http://dataunion.org/11692.html 0 引言 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感 ...

  4. NVIDIA GPUs上深度学习推荐模型的优化

    NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  6. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  7. AI - 深度学习之美十四章-概念摘要(8~14)

    原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 08 - BP算法双向传,链式求导最缠绵 反向传播( ...

  8. AI - 深度学习之美十四章-概念摘要(1~7)

    原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 01 - 一入侯门"深"似海,深 ...

  9. 深度学习VGG16模型核心模块拆解

    原文连接:https://blog.csdn.net/qq_40027052/article/details/79015827 注:这篇文章是上面连接作者的文章.在此仅作学习记录作用. 如今深度学习发 ...

  10. 在排序模型方面,点评搜索也经历了业界比较普遍的迭代过程:从早期的线性模型LR,到引入自动二阶交叉特征的FM和FFM,到非线性树模型GBDT和GBDT+LR,到最近全面迁移至大规模深度学习排序模型。

    https://mp.weixin.qq.com/s/wjgoH6-eJQDL1KUQD3aQUQ 大众点评搜索基于知识图谱的深度学习排序实践 原创: 非易 祝升 仲远 美团技术团队 前天    

随机推荐

  1. mongodb的备份与恢复详解

    简单 Mongodb导出与导入 1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.所以,都有如下通用选项:-h host 主机--port port 端口-u username ...

  2. 【题解】A18535.来自领导的烦恼

    题目跳转 思路:本题可以使用动态规划或递归的方式来实现,本质上是一道01背包的变型题.假设一共有\(n\)名员工,每一位员工的技能水平用\(a[i]\)表示.要使得两个部门的员工技能总和之差最小,意思 ...

  3. 企业生产环境中的麒麟V10(ARM架构)操作系统部署jdk和redis三主三从交叉版集群

    前言:麒麟ARM操作系统是国企和政务机关推行信创化选择率比较高的一款操作系统,然而ARM操作系统非主流的X86系统,除了命令一样,在架构方面差别极大,初次接触多多少少会踩坑,下面我将在公司中部署的实例 ...

  4. Android项目代码规范

    项目代码规范 Android Studio的代码Style检查和inspect Code功能已经很强大,规范只负责代码结构和文件结构 带?的内容为可选或团队内协商内容 核心目标 提高可维护性: MVV ...

  5. 如何5分钟上手使用OCR

    随便打开一个Microsoft Visual Studio,新建一个WinForms项目,从下面列表中随便选择一个NET框架. net35;net40;net45;net451;net452;net4 ...

  6. LlamaFS自组织文件管理器

    LlamaFS是一个自组织文件管理器.它可以基于文件内容和修改时间等属性自动重命名和组织您的文件.它能让你不把时间花在对文件的复制.粘贴.重命名.拷贝.排序等简单操作上.有幸在Github上看到Lla ...

  7. 基于centos7的企业级ceph集群搭建[nautilus14.22版]

    集群规划 本案例通过ceph-deploy方式部署 主机名 配置 外网IP / 内网IP 角色 系统版本 ceph-node01 磁盘x3 50G 192.168.3.101/24 172.16.1. ...

  8. NOIP模拟53

    我在时光斑驳深处,聆听到花开的声音. 前言 这套题好像是随便拼接起来的,来自三套不同的题,最后一道还是学长出的(nb 场上为数不多的几次死磕一道题正解,大概有三个小时吧(惭愧,前两个小时看错题了,一直 ...

  9. jquery中封装了三种ajax请求方式

          // jQuery中封装了3种 ajax 请求方式         // 1, get请求方式         // 2, post请求方式         // 3, 综合请求方式    ...

  10. 用 Easysearch 帮助大型车企降本增效

    最近某头部汽车集团需要针对当前 ES 集群进行优化,背景如下: ES 用于支撑包括核心营销系统.管理支持系统.财务类.IT 基础设施类.研发.自动驾驶等多个重要应用,合计超 50 余套集群,累计数据超 ...