一文读懂Spring的SPI机制
一. 从类加载说起
Java中的类加载器负载加载来自文件系统、网络或者其他来源的类文件。jvm的类加载器默认使用的是双亲委派模式。三种默认的类加载器Bootstrap ClassLoader、Extension ClassLoader和System ClassLoader(Application ClassLoader)每一个中类加载器都确定了从哪一些位置加载文件。于此同时我们也可以通过继承 java.lang.classloader
实现自己的类加载器。
Bootstrap ClassLoader:负责加载JDK自带的rt.jar包中的类文件,是所有类加载的父类
Extension ClassLoader:负责加载java的扩展类库从jre/lib/ect目录或者java.ext.dirs系统属性指定的目录下加载类,是System ClassLoader的父类加载器
System ClassLoader:负责从classpath环境变量中加载类文件
1.1 双亲委派
当一个类加载器收到类加载任务时,会先交给自己的父加载器去完成,因此最终加载任务都会传递到最顶层的BootstrapClassLoader,只有当父加载器无法完成加载任务时,才会尝试自己来加载。
根据双亲委派模式,在加载类文件的时候,子类加载器首先将加载请求委托给它的父加载器,父加载器会检测自己是否已经加载过类,如果已经加载则加载过程结束,如果没有加载的话则请求继续向上传递直Bootstrap ClassLoader。如果请求向上委托过程中,如果始终没有检测到该类已经加载,则Bootstrap ClassLoader开始尝试从其对应路劲中加载该类文件,如果失败则由子类加载器继续尝试加载,直至发起加载请求的子加载器为止。
采用双亲委派模式可以保证类型加载的安全性,不管是哪个加载器加载这个类,最终都是委托给顶层的BootstrapClassLoader来加载的,只有父类无法加载自己猜尝试加载,这样就可以保证任何的类加载器最终得到的都是同样一个Object对象。
protected Class<?> loadClass(String name, boolean resolve) {
synchronized (getClassLoadingLock(name)) {
// 首先,检查该类是否已经被加载,如果从JVM缓存中找到该类,则直接返回
Class<?> c = findLoadedClass(name);
if (c == null) {
try {
// 遵循双亲委派的模型,首先会通过递归从父加载器开始找,
// 直到父类加载器是BootstrapClassLoader为止
if (parent != null) {
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {}
if (c == null) {
// 如果还找不到,尝试通过findClass方法去寻找
// findClass是留给开发者自己实现的,也就是说
// 自定义类加载器时,重写此方法即可
c = findClass(name);
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
1.2 双亲委派模型的缺陷
在双亲委派模型中,子类加载器可以使用父类加载器已经加载的类,而父类加载器无法使用子类加载器已经加载的。这就导致了双亲委派模型并不能解决所有的类加载器问题。
案例:Java 提供了很多服务提供者接口(Service Provider Interface,SPI),允许第三方为这些接口提供实现。常见的 SPI 有 JDBC、JNDI、JAXP 等,这些SPI的接口由核心类库提供,却由第三方实现,这样就存在一个问题:SPI 的接口是 Java 核心库的一部分,是由BootstrapClassLoader加载的;SPI实现的Java类一般是由AppClassLoader来加载的。BootstrapClassLoader是无法找到 SPI 的实现类的,因为它只加载Java的核心库。它也不能代理给AppClassLoader,因为它是最顶层的类加载器。也就是说,双亲委派模型并不能解决这个问题
1.3 使用线程上下文类加载器(ContextClassLoader)加载
如果不做任何的设置,Java应用的线程的上下文类加载器默认就是AppClassLoader。在核心类库使用SPI接口时,传递的类加载器使用线程上下文类加载器,就可以成功的加载到SPI实现的类。线程上下文类加载器在很多SPI的实现中都会用到。
通常我们可以通过Thread.currentThread().getClassLoader()和Thread.currentThread().getContextClassLoader()获取线程上下文类加载器。
1.4 使用类加载器加载资源文件,比如jar包
类加载器除了加载class外,还有一个非常重要功能,就是加载资源,它可以从jar包中读取任何资源文件,比如,ClassLoader.getResources(String name)方法就是用于读取jar包中的资源文件
//获取资源的方法
public Enumeration<URL> getResources(String name) throws IOException {
Enumeration<URL>[] tmp = (Enumeration<URL>[]) new Enumeration<?>[2];
if (parent != null) {
tmp[0] = parent.getResources(name);
} else {
tmp[0] = getBootstrapResources(name);
}
tmp[1] = findResources(name);
return new CompoundEnumeration<>(tmp);
}
它的逻辑其实跟类加载的逻辑是一样的,首先判断父类加载器是否为空,不为空则委托父类加载器执行资源查找任务,直到BootstrapClassLoader,最后才轮到自己查找。而不同的类加载器负责扫描不同路径下的jar包,就如同加载class一样,最后会扫描所有的jar包,找到符合条件的资源文件。
// 使用线程上下文类加载器加载资源
public static void main(String[] args) throws Exception{
// Array.class的完整路径
String name = "java/sql/Array.class";
Enumeration<URL> urls = Thread.currentThread().getContextClassLoader().getResources(name);
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
System.out.println(url.toString());
}
}
二. Spring中的SPI机制
2.1 Spring中SPI的使用
在Spring中提供了SPI机制,我们只需要在 META-INF/spring.factories
中配置接口实现类名,即可通过服务发现机制,在运行时加载接口的实现类:
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
org.springframework.boot.autoconfigure.admin.SpringApplicationAdminJmxAutoConfiguration
在 spring-boot-autoconfigure
模块下,SpringBoot默认就配置了很多接口的服务实现:
配置好 spring.factories
文件后,我们就可以通过 SpringFactoriesLoader 动态加载接口实现类了,代码如下:
List<String> strings = SpringFactoriesLoader.loadFactoryNames(ApplicationContextInitializer.class, this.getClass().getClassLoader());
System.out.println(strings);
我们在引入 spring-boot-starter-web
模块时,应用环境就配置了6个 ApplicationContextInitializer
接口实现类:
2.2 SpringFactoriesLoader API
org.springframework.core.io.support.SpringFactoriesLoader
就是Spring框架中的“ServiceLoader”,该类提供了下列功能:
类静态成员常量
final String FACTORIES_RESOURCE_LOCATION = "META-INF/spring.factories"
此常量定义了该工具类要从每个jar包中提取的工厂类定义属性文件的相对路径。类静态方法
<T> List<T> loadFactories(Class<T> factoryClass, ClassLoader classLoader)
此方法会读取classpath上所有的jar包中的所有META-INF/spring.factories
属性文件,找出其中定义的匹配类型 factoryClass 的工厂类,然后创建每个工厂类的对象/实例,并返回这些工厂类对象/实例的列表。类静态方法
List<String> loadFactoryNames(Class<?> factoryClass, ClassLoader classLoader)
此方法会读取classpath上所有的jar包中的所有META-INF/spring.factories
属性文件,找出其中定义的匹配类型 factoryClass 的工厂类,然后并返回这些工厂类的名字列表,注意是包含包名的全限定名。
2.3 SpringFactoriesLoader 源码
本源码基于 spring-framework 5.3.10 版本分析:
/**
* General purpose factory loading mechanism for internal use within the framework.
* 用于框架内部使用的通用工厂加载机制。
*
* <p>{@code SpringFactoriesLoader} {@linkplain #loadFactories loads} and instantiates
* factories of a given type from {@value #FACTORIES_RESOURCE_LOCATION} files which
* may be present in multiple JAR files in the classpath. The {@code spring.factories}
* file must be in {@link Properties} format, where the key is the fully qualified
* name of the interface or abstract class, and the value is a comma-separated list of
* implementation class names. For example:
*
* SpringFactoriesLoader#loadFactories设计用于加载和实例化指定类型的工厂,这些工厂类型的定义
* 来自classpath中多个JAR包内常量FACTORIES_RESOURCE_LOCATION所指定的那些spring.factories文件。
* spring.factories文件的格式必须是{@link Properties}格式,每条属性的key必须是接口或者抽象类的全限定名,
* 而属性值value是一个逗号分割的实现类的名称。
*
* <pre class="code">example.MyService=example.MyServiceImpl1,example.MyServiceImpl2</pre>
*
* where {@code example.MyService} is the name of the interface, and {@code MyServiceImpl1}
* and {@code MyServiceImpl2} are two implementations.
*
* @author Arjen Poutsma
* @author Juergen Hoeller
* @author Sam Brannen
* @since 3.2
*/
public final class SpringFactoriesLoader {
/**
* The location to look for factories.
* <p>Can be present in multiple JAR files.
*
* 在classpath中的多个JAR中要扫描的工厂配置文件的在本JAR包中的路径。
* 实际上,Springboot的每个 autoconfigure包都包含一个这样的文件。
*/
public static final String FACTORIES_RESOURCE_LOCATION = "META-INF/spring.factories";
private static final Log logger = LogFactory.getLog(SpringFactoriesLoader.class);
/**
* 缓存,在 loadFactoryNames 首次被调用时,所有jar包中的 META-INF/spring.factories
* 文件内容都会被加载,然后缓存在 cache 中, 注意 cache Map 的 key 是 loadFactoryNames
* 调用时的参数 classLoader, 而 value 是另外一个 Map,其 key 是工厂类的名称,
* 也就是每个 META-INF/spring.factories 属性文件中属性名部分
*/
static final Map<ClassLoader, Map<String, List<String>>> cache = new ConcurrentReferenceHashMap<>();
private SpringFactoriesLoader() {
}
/**
* Load and instantiate the factory implementations of the given type from
* {@value #FACTORIES_RESOURCE_LOCATION}, using the given class loader.
* <p>The returned factories are sorted through {@link AnnotationAwareOrderComparator}.
* <p>If a custom instantiation strategy is required, use {@link #loadFactoryNames}
* to obtain all registered factory names.
* <p>As of Spring Framework 5.3, if duplicate implementation class names are
* discovered for a given factory type, only one instance of the duplicated
* implementation type will be instantiated.
* @param factoryType the interface or abstract class representing the factory
* @param classLoader the ClassLoader to use for loading (can be {@code null} to use the default)
* @throws IllegalArgumentException if any factory implementation class cannot
* be loaded or if an error occurs while instantiating any factory
* @see #loadFactoryNames
*/
public static <T> List<T> loadFactories(Class<T> factoryType, @Nullable ClassLoader classLoader) {
Assert.notNull(factoryType, "'factoryType' must not be null");
ClassLoader classLoaderToUse = classLoader;
if (classLoaderToUse == null) {
classLoaderToUse = SpringFactoriesLoader.class.getClassLoader();
}
// 加载类型为factoryClass的工厂的名称,其实是一个个的全限定类名,使用指定的classloader:
List<String> factoryImplementationNames = loadFactoryNames(factoryType, classLoaderToUse);
if (logger.isTraceEnabled()) {
logger.trace("Loaded [" + factoryType.getName() + "] names: " + factoryImplementationNames);
}
List<T> result = new ArrayList<>(factoryImplementationNames.size());
// 实例化所加载的每个工厂类
for (String factoryImplementationName : factoryImplementationNames) {
result.add(instantiateFactory(factoryImplementationName, factoryType, classLoaderToUse));
}
// 排序
AnnotationAwareOrderComparator.sort(result);
return result;
}
/**
* Load the fully qualified class names of factory implementations of the
* given type from {@value #FACTORIES_RESOURCE_LOCATION}, using the given
* class loader.
* <p>As of Spring Framework 5.3, if a particular implementation class name
* is discovered more than once for the given factory type, duplicates will
* be ignored.
* @param factoryType the interface or abstract class representing the factory
* @param classLoader the ClassLoader to use for loading resources; can be
* {@code null} to use the default
* @throws IllegalArgumentException if an error occurs while loading factory names
* @see #loadFactories
*/
public static List<String> loadFactoryNames(Class<?> factoryType, @Nullable ClassLoader classLoader) {
ClassLoader classLoaderToUse = classLoader;
if (classLoaderToUse == null) {
classLoaderToUse = SpringFactoriesLoader.class.getClassLoader();
}
String factoryTypeName = factoryType.getName();
// 1. 使用指定的classloader扫描classpath上所有的JAR包中的文件META-INF/spring.factories,加载其中的多值
// 工厂属性定义,使用多值Map的形式返回,
// 2. 返回多值Map中key为factoryClassName的工厂名称列表,如果没有相应的entry,返回空列表而不是返回null
return loadSpringFactories(classLoaderToUse).getOrDefault(factoryTypeName, Collections.emptyList());
}
/**
* 使用指定的classloader扫描classpath上所有的JAR包中的文件META-INF/spring.factories,加载其中的多值
* 工厂属性定义,使用多值Map的形式返回
**/
private static Map<String, List<String>> loadSpringFactories(ClassLoader classLoader) {
Map<String, List<String>> result = cache.get(classLoader);
if (result != null) {
return result;
}
result = new HashMap<>();
try {
// 扫描classpath上所有JAR中的文件META-INF/spring.factories
Enumeration<URL> urls = classLoader.getResources(FACTORIES_RESOURCE_LOCATION);
while (urls.hasMoreElements()) {
// 找到的每个META-INF/spring.factories文件都是一个Properties文件,将其内容
// 加载到一个 Properties 对象然后处理其中的每个属性
URL url = urls.nextElement();
// url 对应某个 META-INF/spring.factories 配置文件资源
UrlResource resource = new UrlResource(url);
// properties 来自 url 对应某个 META-INF/spring.factories 配置文件资源
Properties properties = PropertiesLoaderUtils.loadProperties(resource);
for (Map.Entry<?, ?> entry : properties.entrySet()) {
// 获取工厂类名称(接口或者抽象类的全限定名)
String factoryTypeName = ((String) entry.getKey()).trim();
// 将逗号分割的属性值逐个取出,然后放到多值Map结果result中去。
String[] factoryImplementationNames =
StringUtils.commaDelimitedListToStringArray((String) entry.getValue());
for (String factoryImplementationName : factoryImplementationNames) {
// 放到 result 中 :
// key 使用 factoryClassName
// value 可能有多值, 使用 factoryName
result.computeIfAbsent(factoryTypeName, key -> new ArrayList<>())
.add(factoryImplementationName.trim());
}
}
}
// Replace all lists with unmodifiable lists containing unique elements
result.replaceAll((factoryType, implementations) -> implementations.stream().distinct()
.collect(Collectors.collectingAndThen(Collectors.toList(), Collections::unmodifiableList)));
// 放到缓存中,key 使用 classLoader
cache.put(classLoader, result);
}
catch (IOException ex) {
throw new IllegalArgumentException("Unable to load factories from location [" +
FACTORIES_RESOURCE_LOCATION + "]", ex);
}
return result;
}
/**
* @param factoryImplementationName 工厂实现类全限定名称
* @param factoryType 工厂所属接口/抽象类全限定名称
* @param classLoader 所要使用的类加载器
**/
@SuppressWarnings("unchecked")
private static <T> T instantiateFactory(String factoryImplementationName, Class<T> factoryType, ClassLoader classLoader) {
try {
Class<?> factoryImplementationClass = ClassUtils.forName(factoryImplementationName, classLoader);
if (!factoryType.isAssignableFrom(factoryImplementationClass)) {
throw new IllegalArgumentException(
"Class [" + factoryImplementationName + "] is not assignable to factory type [" + factoryType.getName() + "]");
}
return (T) ReflectionUtils.accessibleConstructor(factoryImplementationClass).newInstance();
}
catch (Throwable ex) {
throw new IllegalArgumentException(
"Unable to instantiate factory class [" + factoryImplementationName + "] for factory type [" + factoryType.getName() + "]",
ex);
}
}
}
2.4 SpringFactoriesLoader 的应用
Spring Boot提供的一些JAR包,里面会带有文件META-INF/spring.factories。Spring Boot应用启动的时候,根据启动阶段不同的需求,框架就会调用SpringFactoriesLoader加载相应的工厂配置信息。
比如SpringBoot应用使用了注解@EnableAutoConfiguration时,就会触发对SpringFactoriesLoader.loadFactoryNames()的调用。
除此之外,SpringBoot还会对外提供其它的扩展点,下面列举了部分常见的扩展点
// SpringApplication.initialize
// => SpringApplication.getSpringFactoriesInstances()
SpringFactoriesLoader.loadFactoryNames(org.springframework.context.ApplicationContextInitializer)
// SpringApplication.initialize
// => SpringApplication.getSpringFactoriesInstances()
SpringFactoriesLoader.loadFactoryNames(org.springframework.context.ApplicationListenr)
// SpringApplication.run
// => getRunListeners
// => SpringApplication.getSpringFactoriesInstances()
SpringFactoriesLoader.loadFactoryNames(org.springframework.boot.SpringApplicationRunListener)
// SpringApplication.run
// => prepareEnvironment
// => SpringApplication.getSpringFactoriesInstances()
// => ConfigFileApplicationListener.onApplicationEnvironmentPreparedEvent() //事件处理
// => loadPostProcessors()
SpringFactoriesLoader.loadFactoryNames(org.springframework.boot.env.EnvironmentPostProcessor)
我们就以 ApplicationContextInitializer
为例,分析一下在SpringBoot中 ApplicationContextInitializer
扩展点的加载时机。
SpringBoot启动是直接使用 main
方法启动,程序入口一目了然,对源码阅读比较友好,下面是一个SpringBoot应用标准的启动代码:
SpringApplication.run(SpringBootTestApplication.class, args);
我们从 run
方法入手:
public static ConfigurableApplicationContext run(Class<?> primarySource, String... args) {
// <1> 调用重载run方法
return run(new Class<?>[] { primarySource }, args);
}
public static ConfigurableApplicationContext run(Class<?>[] primarySources, String[] args) {
// <2> 创建,并初始化SpringApplication实例,并调用run方法,启动容器
return new SpringApplication(primarySources).run(args);
}
首先是连续两个重载的静态run方法,静态run方法内部会调用构造方法实例化SpringApplication对象,再调用一个成员方法run()来正式启动。
public SpringApplication(ResourceLoader resourceLoader, Class<?>... primarySources) {
this.resourceLoader = resourceLoader;
Assert.notNull(primarySources, "PrimarySources must not be null");
this.primarySources = new LinkedHashSet<>(Arrays.asList(primarySources));
this.webApplicationType = WebApplicationType.deduceFromClasspath();
this.bootstrapRegistryInitializers = new ArrayList<>(
getSpringFactoriesInstances(BootstrapRegistryInitializer.class));
// <3> 通过SPI机制,加载classpath环境中配置的ApplicationContextInitializer实现类,并实例化
setInitializers((Collection) getSpringFactoriesInstances(ApplicationContextInitializer.class));
// <4> 通过SPI机制,加载classpath环境中配置的ApplicationListener实现类,并实例化
setListeners((Collection) getSpringFactoriesInstances(ApplicationListener.class));
this.mainApplicationClass = deduceMainApplicationClass();
}
在调用构造器实例化SpringApplication时,会通过SPI机制,加载classpath环境中配置的ApplicationContextInitializer实现类,并实例化:
private <T> Collection<T> getSpringFactoriesInstances(Class<T> type) {
return getSpringFactoriesInstances(type, new Class<?>[] {});
}
private <T> Collection<T> getSpringFactoriesInstances(Class<T> type, Class<?>[] parameterTypes, Object... args) {
// 获取当前线程的classLoader
ClassLoader classLoader = getClassLoader();
// Use names and ensure unique to protect against duplicates
// <1> 加载指定类型对应的,在 `META-INF/spring.factories` 里的类名的数组
Set<String> names = new LinkedHashSet<>(SpringFactoriesLoader.loadFactoryNames(type, classLoader));
// <2> 创建对象
List<T> instances = createSpringFactoriesInstances(type, parameterTypes, classLoader, args, names);
// <3> 排序对象
AnnotationAwareOrderComparator.sort(instances);
return instances;
}
三. SpringBoot2.7.0 自动配置将不推荐使用spring.factories
SpringBoot 2.7 中,不再推荐使用/META-INF/spring.factories
文件作为自动配置类的配置文件,所以对于有自定义Starter的开发者来说,有时间要抓紧把这一变化改起来了,因为在SpringBoot 3开始将移除对/META-INF/spring.factories的支持。
如果您已经创建了自动配置,那么应该将注册从META-INF/spring.factories
转移到一个名为META-INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports
的新文件。每一行都包含自动配置的完全限定名。请参考: the included auto-configurations
为了向后兼容,spring.factories 的功能仍将暂时支持。
本文参考至:
一文读懂Spring的SPI机制的更多相关文章
- 一文读懂 Spring Boot、微服务架构和大数据治理三者之间的故事
微服务架构 微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物.互联网时代的产品通常有两类特点:需求变化快和用户群体庞大,在这种情况 ...
- 一文读懂Spring MVC执行流程
说到Spring MVC执行流程,网上有很多这方面的文章介绍,但是都不太详细,作为一个初学者去读会有许多不理解的地方,今天这篇文章记录一下我学习Spring MVC的心得体会 话不多说,先上图: ...
- Java——一文读懂Spring MVC执行流程
说到Spring MVC执行流程,网上有很多这方面的文章介绍,但是都不太详细,作为一个初学者去读会有许多不理解的地方,今天这篇文章记录一下我学习Spring MVC的心得体会 话不多说,先上图: Sp ...
- 干货|一文读懂 Spring Data Jpa!
有很多读者留言希望松哥能好好聊聊 Spring Data Jpa!其实这个话题松哥以前零零散散的介绍过,在我的书里也有介绍过,但是在公众号中还没和大伙聊过,因此本文就和大家来仔细聊聊 Spring D ...
- Java集合详解3:一文读懂Iterator,fail-fast机制与比较器
<Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...
- 一文读懂Spring动态配置多数据源---源码详细分析
Spring动态多数据源源码分析及解读 一.为什么要研究Spring动态多数据源 期初,最开始的原因是:想将答题服务中发送主观题答题数据给批改中间件这块抽象出来, 但这块主要使用的是mq消息的方式 ...
- 一文读懂spring boot 和微服务的关系
欢迎访问网易云社区,了解更多网易技术产品运营经验. Spring Boot 和微服务没关系, Java 微服务治理框架普遍用的是 Spring Cloud. Spring Boot 产生的背景,是开发 ...
- 一文读懂MySQL的事务隔离级别及MVCC机制
回顾前文: 一文学会MySQL的explain工具 一文读懂MySQL的索引结构及查询优化 (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论不一定适用于其他版本) 就软件开 ...
- 一文读懂Java动态代理
作者 :潘潘 日期 :2020-11-22 事实上,对于很多Java编程人员来说,可能只需要达到从入门到上手的编程水准,就能很好的完成大部分研发工作.除非自己强主动获取,或者工作倒逼你学习,否则我们好 ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
随机推荐
- SpringCloud整体架构概览
什么是SpringCloud #目标 协调任何服务,简化分布式系统开发. #简介 构建分布式系统不应该是复杂的,SpringCloud对常见的分布式系统模式提供了简单易用的编程模型,帮助开发者构建弹性 ...
- 如何在macOS上安装Python3并设置本地编程环境
介绍 Python是一种多功能编程语言,可用于许多不同的编程项目.1991年首次出版,其名称灵感来自英国喜剧组织Monty Python,开发团队希望使Python成为一种有趣的语言.易于设置,并以相 ...
- 重新整理 .net core 实践篇———承载[外篇]
前言 简单介绍一下承载. 正文 名称叫做承载,其实就是.net core 定义的一套长期运行的服务的规范. 这个服务可以是web服务,也可以是其他服务,比如tcp,或者一些监控服务. 这里以监控服务为 ...
- async/await 贴脸输出,这次你总该明白了
出来混总是要还的 最近在准备记录一个.NET Go核心能力的深度对比, 关于.NET/Go的异步实现总感觉没敲到点上. async/await是.NET界老生常谈的话题,每至于此,状态机又是必聊的话题 ...
- React的理解以及特性
一.是什么 React,用于构建用户界面的 JavaScript 库,提供了 UI 层面的解决方案 遵循组件设计模式.声明式编程范式和函数式编程概念,以使前端应用程序更高效 使用虚拟DOM来有效地操作 ...
- OpenKruise v1.3:新增自定义 Pod Probe 探针能力与大规模集群性能显著提升
简介: 在版本 v1.3 中,OpenKruise 提供了新的 CRD 资源 PodProbeMarker,改善了大规模集群的一些性能问题,Advanced DaemonSet 支持镜像预热,以及 C ...
- Elasticsearch生态&技术峰会 | 阿里云Elasticsearch云原生内核
简介: 开源最大的特征就是开放性,云生态则让开源技术更具开放性与创造性,Elastic 与阿里云的合作正是开源与云生态共生共荣的典范.值此合作三周年之际,我们邀请业界资深人士相聚云端,共话云上Elas ...
- coredump 瘦身风云
简介: minicoredump神也! 继上一篇非典型程序员青囊搞定内存泄露问题后,美美地睡了一觉.睡梦中,突然金光闪闪,万道光芒照进时光隧道,恍惚来到大唐神龙年间.青囊此时化身狄仁杰高级助理, ...
- Apache Flink 在京东的实践与优化
简介: Flink 助力京东实时计算平台朝着批流一体的方向演进. 本文整理自京东高级技术专家付海涛在 Flink Forward Asia 2020 分享的议题<Apache Flink 在京 ...
- Ollama是什么,为什么这么好用
Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计. 以下是其主要特点和功能概述: 1. 简化部署:Ollama 目标在于简化在 Docker 容器中部署大型语言 ...