POJ - 1330

Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %lld & %llu

Submit Status

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

这是一道裸LCA,给你一个有根树,再给你两个点判断其最近公共祖先,可以用tarjan解决

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#define X first
#define Y second
using namespace std;
typedef pair<int,int> pii;
const int maxn=;
int f[maxn],n,LCA[maxn],in[maxn],vis[maxn],R;
vector<int> V[maxn];
pii P;
void init()
{
for (int i=; i<=n; i++)
V[i].clear(),f[i]=i;
memset(LCA,,sizeof(LCA));
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
}
int find(int x)
{
return f[x]==x?x:f[x]=find(f[x]);
}
int mix(int x,int y)
{
int fx=find(x),fy=find(y);
if (fx==fy) return ;
f[fx]=fy;
return ;
}
void Tarjan(int root)
{
vis[root]=;
if (P.X==root&&vis[P.Y])
{
LCA[R]=find(P.Y);
return ;//因为只有一条边,找到直接return
}
if (P.Y==root&&vis[P.X])
{
LCA[R]=find(P.X);
return ;
}
for (int i=; i<V[root].size(); i++)
{
if (!vis[V[root][i]]);
Tarjan(V[root][i]);
f[V[root][i]]=root;
}
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
int a,b;
scanf("%d",&n);
init();
for (int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if (a!=b)
{
in[b]++;//in记录入度
V[a].push_back(b);
}
}
scanf("%d%d",&a,&b);
P.X=a,P.Y=b;
for (int i=;i<=n;i++)
if (in[i]==)//根节点的入度为0
{
R=i;//R为根节点
Tarjan(i);
printf("%d\n",LCA[R]);
break;
}
}
return ;
}

POJ - 1330 Nearest Common Ancestors(基础LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  2. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  3. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  4. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

  5. 【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

  6. POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

  7. poj 1330 Nearest Common Ancestors(LCA:最近公共祖先)

    多校第七场考了一道lca,那么就挑一道水题学习一下吧= = 最简单暴力的方法:建好树后,输入询问的点u,v,先把u全部的祖先标记掉,然后沿着v->rt(根)的顺序检查,第一个被u标记的点即为u, ...

  8. POJ 1330:Nearest Common Ancestors【lca】

    题目大意:唔 就是给你一棵树 和两个点,问你这两个点的LCA是什么 思路:LCA的模板题,要注意的是在并查集合并的时候并不是随意的,而是把叶子节点合到父节点上 #include<cstdio&g ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

随机推荐

  1. java参数传递(值传递还是引用传递)

    Java中的参数传递机制一直以来大家都争论不休,究竟是“传值”还是“传址(传引用)”,争论的双方各执一词,互不相让.不但“菜鸟”们一头雾水,一些“老鸟”也只知道结果却说不出所以然来.我相信看过下面的内 ...

  2. 配置 Ionic环境

    本博客只适合win7 系统 准备  必须要有 注意了!!!! //注意所以路径均不支持中文 1.安装JSK (jsva环境) 默认安装位置 如果是32位操作系统  需要安装32bit版的JDK C:\ ...

  3. LaTeX入门教程(二)

    LaTeX(LATEX,音译"拉泰赫")是一种基于ΤΕΧ的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在20世纪80年代初期开发,利用这种格式,即使使用 ...

  4. codewars-random(2)

    找出数组中的间谍 思路一:遍历一遍数组,开始前将flag设置为0:将count设为0:每当出现一个奇数(注意负数)count加1,当count大于等于2时将flag至为1: 再遍历一遍数组,如果fla ...

  5. [HMLY]7.iOS MVVM+RAC 从框架到实战

    1.MVVM浅析 MVC是构建iOS App的标准模式,是苹果推荐的一个用来组织代码的权威范式,市面上大部分App都是这样构建的,具体组织模式不细说,iOS入门者都比较了解(虽然不一定能完全去遵守), ...

  6. PSR

    目前包括以下几个规范: PSR-0(弃用) PSR-1 PSR-2 PSR-3 PSR-4 1.PSR-0 自动加载规范,此规范已被启用-本规范已于2014年10月21日被标记为弃用,目前新的替代规范 ...

  7. iOS 水波效果

    将水波效果放在子视图上,主控制器只负责加载 #import "WaveProgress.h" @interface WaveProgress () @property (nonat ...

  8. Python学习懒出极致——自备常用链接

    linux: samba配置:http://blog.chinaunix.net/uid-23069658-id-3142052.html ubuntu: mysql启停:http://www.2ct ...

  9. 负载均衡,最理想使用 redis实现session共享

    负载均衡在多台php服务器负载均衡的情况下,第一秒请求是a服务器,第二秒请求是b服务器, session必须放在一个公共的服务器,最理想是使用 redis实现session共享.内存的速度比磁盘访问快 ...

  10. Hololens生成与安装(旁加载)应用

    Hololens生成应用的几种方式: 一:HoloToolkit编辑器生成appx应用 二:Vistul Studio 2015 创建应用 旁加载概述: 你可以将应用旁加载到你的设备,而无需将它们提交 ...