Problem description

Despite the glorious fall colors in the midwest, there is a great deal of time to spend while on a train from St. Louis to Chicago. On a recent trip, we passed some time with the following game.

We start with a positive integer S. So long as it has more than one digit, we compute the product of its digits and repeat. For example, if starting with 95, we compute 9 × 5 = 45 . Since 45 has more than one digit, we compute 4 × 5 = 20 . Continuing with 20, we compute 2 × 0 = 0 . Having reached 0, which is a single-digit number, the game is over.

As a second example, if we begin with 396, we get the following computations:

3 × 9 × 6 = 162

1 × 6 × 2 = 12

1 × 2 = 2

and we stop the game having reached 2.

Input
   Each line contains a single integer 1 ≤ S ≤ 100000, designating the starting value. The value S will not have any leading zeros. A value of 0 designates the end of the input.
Output
  For each nonzero input value, a single line of output should express the ordered sequence of values that are considered during the game, starting with the original value.
Sample Input
95
396
28
4
40
0
Sample Output

95 45 20 0396 162 12 228 16 6440 0

题意:给出一个数字,将每一位相乘得到下一个数字,知道数字位数为1则停止,输出所有情况

水题,不解释

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int main()
{
int n,t,r,s;
while(~scanf("%d",&n),n)
{
int cnt = 0;
printf("%d",n);
if(n>=10)
{
while(n)
{
t = n;
s = 1;
while(t)
{
r = t%10;
s*=r;
t/=10;
}
n = s;
if(n/10==0)
{
printf(" %d",n);
break;
}
printf(" %d",s);
}
}
printf("\n");
} return 0;
}

HUNNU11352:Digit Solitaire的更多相关文章

  1. 四校训练 warm up 14

    A:Pythagoras's Revenge 代码: #include<cstdio> #define ll long long using namespace std; int main ...

  2. [LeetCode] Nth Digit 第N位

    Find the nth digit of the infinite integer sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... Note: n i ...

  3. [LeetCode] Number of Digit One 数字1的个数

    Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...

  4. [Leetcode] Number of Digit Ones

    Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...

  5. 【Codeforces715C&716E】Digit Tree 数学 + 点分治

    C. Digit Tree time limit per test:3 seconds memory limit per test:256 megabytes input:standard input ...

  6. kaggle实战记录 =>Digit Recognizer

    date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的 ...

  7. [UCSD白板题] The Last Digit of a Large Fibonacci Number

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  8. Last non-zero Digit in N!(阶乘最后非0位)

    Last non-zero Digit in N! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  9. POJ3187Backward Digit Sums[杨辉三角]

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6350   Accepted: 36 ...

随机推荐

  1. 14.6.7?Limits on InnoDB Tables InnoDB 表的限制

    14.6.7?Limits on InnoDB Tables InnoDB 表的限制 警告: 不要把MySQL system tables 从MyISAM 到InnoDB 表. 这是不支持的操作,如果 ...

  2. 我是如何同时拿到阿里和腾讯offer的

    前言 三月真是一个忙碌的季节,刚刚开学就需要准备各种面试和笔试(鄙视).幸运的是,在长达一个月的面试内推季之后,终于同时拿到了阿里和腾讯的offer,还是挺开心的.突而想起久未更新的博客,就冒昧学一学 ...

  3. Raspberry pi raspbain系统下使用vim

    一开始 apt-get install vim不好用. 在putty中执行这条命令就可以了. sudo apt-get update && sudo apt-get install v ...

  4. 从头学起android&lt;AudioManager 声音编辑器.五十.&gt;

    我们用android经常使用的时候,手机的声音增大和缩小操作.在设定场景模式,它往往使用静音和振动运行,这通常是AudioManager来控制的. 今天我们就来看一下AudioManager 的使用. ...

  5. 推荐一个第三方Qt库的集合

    https://inqlude.org/ Stable libraries | Development versions | Unreleased | Commercial | All attica ...

  6. AS3开发必须掌握的内容

    1.事件机制 2.显示列表 3.垃圾回收 4.常用方法 5.网络通信 6.位图动画 7.渲染机制 8.API结构 9.沙箱机制 10.资源管理 11.内存管理 12.性能优化 13.资源选择 14.安 ...

  7. 在浏览器中通过bartender,调用条码打印机的active控件代码的实现

    系统中须要在浏览器,直接调用条码打印机,打印出产品条码. 现实中的条码打印机,品种繁多,非常难在一个程序中实现, 于是我们用已经支持全部条码打印机的bartender软件 调用它的api ,来实如今浏 ...

  8. Twenty Newsgroups Classification实例任务之TrainNaiveBayesJob(一)

    接着上篇blog,继续看log里面的信息如下: + echo 'Training Naive Bayes model' Training Naive Bayes model + ./bin/mahou ...

  9. Windows移动开发(四)——闭关修炼

    非常久不写博客了,不是由于不想写,仅仅是近期公司任务比較多,最终十一有时间出来冒泡了. 今天继续介绍移动开发中的重中之重--内存管理. C#代码是托管代码,C# 程序猿非常少像C/CPP程序猿那样为程 ...

  10. 数据挖掘 决策树算法 ID3 通俗演绎

    决策树是对数据进行分类,以此达到预測的目的.该决策树方法先依据训练集数据形成决策树,假设该树不能对全部对象给出正确的分类,那么选择一些例外添�到训练集数据中,反复该过程一直到形成正确的决策集.决策树代 ...