两次SPFA

第一关找:从1没有出发点到另一个点的多少是留给油箱

把边反过来再找一遍:重每一个点到终点最少须要多少油

Greedy Driver


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Edward is a truck driver of a big company. His daily work is driving a truck from one city to another. Recently he got a long distance driving work, so he may be needed to add fuel to
his truck on the way. His boss gives him a fuel card, he can use the card anytime at any fuel station and add any amount of fuel. He does not spend any money when he uses the card. He noticed that there are some cities where he could sell fuel. The greedy
driver Edward want to make some money while he doing this work. And this is his plan:

There are N cities on his map and numbered from 1 to N, he need to drive from city 1 to city N to finish this task. Driving from one city to another need
fuel cost too. There are some of the cities has fuel station, he could use his fuel card at these cities. Notice his truck has a fuel tank capacity C and it could not exceed the capacity when add fuel. At the beginning, he is at city 1 and
he has a full tank.

At some cities he could sell any amount of fuel he has, and the prices at each city maybe different. Since he does not want to be found, he sell the fuel at most once totally. Under the
premise of driving to city N finally, he wants to make the maximal money.

Input

There are multiple test cases. For each test case:

The first line contains three integer N (1 ≤ N ≤ 1000), M (1 ≤ M ≤ 100000), C(1 ≤ C ≤ 30000), N is the number
of cities, M is the number of roads, please notice that the roads is single-way, and C is the fuel tank capacity.

The after M lines describe the roads, each line has three integers AB (1 ≤ AB ≤ N), L (1 ≤ L ≤
30000). That means the fuel cost from city A to city B is L.

Then a single line contain one integer P (0 ≤ P ≤ N), it is the number of cities which has a fuel station.

The after single line contains P integers, each integer pi (1 ≤ pi ≤ N) is a city number means this city has
a fuel station.

Then a single line contain one integer Q (0 ≤ Q ≤ N), it is the number of cities which he could sell fuel.

Each of the after Q lines contains two integers qi (1 ≤ qi ≤ N), vi (1 ≤ vi ≤
30000), means the price at city qi is vi. If he sell one unit of fuel, he will get vi money.

There is a blank line between every two cases.

Process to the end of input.

Output

One line for each test case. The maximal money he could make while doing this task, or -1 if he could not reach city N.

Sample Input

5 6 10
1 2 4
1 4 1
4 3 1
2 5 1
4 5 2
3 2 1
1
3
1
2 2

Sample Output

16

Author: LI, Huang

Source: ZOJ Monthly, June 2014

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> using namespace std; const int maxn=110000;
const int INF=0x3f3f3f3f; struct Edge
{
int to,next,cost;
}edge[maxn],edge2[maxn]; int Adj[maxn/100],Adj2[maxn/100],Size,Size2;
int fuel[maxn/100],price[maxn/100],n,m,c,p,q; void init()
{
Size=Size2=0;
memset(Adj,-1,sizeof(Adj));
memset(Adj2,-1,sizeof(Adj2));
memset(fuel,0,sizeof(fuel));
memset(price,0,sizeof(price));
} void Add_Edge(int u,int v,int w)
{
edge[Size].next=Adj[u];
edge[Size].to=v;
edge[Size].cost=w;
Adj[u]=Size++;
} void Add_Edge2(int u,int v,int w)
{
edge2[Size2].next=Adj2[u];
edge2[Size2].to=v;
edge2[Size2].cost=w;
Adj2[u]=Size2++;
} int dmax[maxn/100],cq[maxn],dmin[maxn/100];
bool inq[maxn/100]; bool spfa_find_max()
{
memset(dmax,-1,sizeof(dmax));
memset(cq,0,sizeof(cq));
memset(inq,false,sizeof(inq));
dmax[1]=c;
queue<int> q;
inq[1]=true,cq[1]=1; q.push(1); while(!q.empty())
{
int u=q.front();q.pop();
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(dmax[u]-edge[i].cost<0) continue;
if(dmax[v]<dmax[u]-edge[i].cost)
{
if(fuel[v]) dmax[v]=c;
else dmax[v]=dmax[u]-edge[i].cost;
if(inq[v]==false)
{
inq[v]=true;
cq[v]++;
if(cq[v]>=n) return false;
q.push(v);
}
}
}
inq[u]=false;
}
return true;
} bool spfa_find_min()
{
memset(dmin,63,sizeof(dmin));
memset(inq,false,sizeof(inq));
memset(cq,0,sizeof(cq));
dmin[n]=0;
queue<int> q;
q.push(n);
inq[n]=true,cq[n]=1; while(!q.empty())
{
int u=q.front(); q.pop(); for(int i=Adj2[u];~i;i=edge2[i].next)
{
int v=edge2[i].to;
if(dmin[u]+edge2[i].cost>c) continue;
if(dmin[v]>dmin[u]+edge2[i].cost)
{
if(fuel[v]) dmin[v]=0;
else
{
dmin[v]=dmin[u]+edge2[i].cost;
}
if(inq[v]==false)
{
inq[v]=true;
cq[v]++;
if(cq[v]>=n) return false;
q.push(v);
}
}
}
inq[u]=false;
}
return true;
} int main()
{
while(scanf("%d%d%d",&n,&m,&c)!=EOF)
{
init();
for(int i=0;i<m;i++)
{
int u,v,x;
scanf("%d%d%d",&u,&v,&x);
Add_Edge(u,v,x);
Add_Edge2(v,u,x);
}
scanf("%d",&p);
for(int i=0;i<p;i++)
{
int x; scanf("%d",&x);
fuel[x]=1;
}
scanf("%d",&q);
for(int i=0;i<q;i++)
{
int x,y; scanf("%d%d",&x,&y);
price[x]=y;
}
spfa_find_max();///油箱里最多剩下多少油
spfa_find_min();///到终点最少须要多少油
if(dmax[n]==-1||dmin[1]==INF) puts("-1");
else
{
int ans=0;
for(int i=1;i<=n;i++)
{
if(price[i]&&dmax[i]!=-1&&dmin[i]!=INF)
{
ans=max(ans,price[i]*(dmax[i]-dmin[i]));
}
}
printf("%d\n",ans);
}
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

ZOJ 3794 Greedy Driver的更多相关文章

  1. ZOJ 3794 Greedy Driver spfa

    题意: 给定n个点,m条有向边,邮箱容量. 起点在1,终点在n,開始邮箱满油. 以下m行表示起点终点和这条边的耗油量(就是长度) 再以下给出一个数字m表示有P个加油站,能够免费加满油. 以下一行P个数 ...

  2. ZOJ Monthly, June 2014 月赛BCDEFGH题题解

    比赛链接:点击打开链接 上来先搞了f.c,,然后发现状态不正确,一下午都是脑洞大开,, 无脑wa,无脑ce...一样的错犯2次.. 硬着头皮搞了几发,最后20分钟码了一下G,不知道为什么把1直接当成不 ...

  3. ZOJ Monthly, June 2014 解题报告

    A.Another Recurrence Sequence problemId=5287">B.Gears 题目大意:有n个齿轮,一開始各自为一组.之后进行m次操作,包含下面4种类型: ...

  4. 深入linux kernel内核配置选项

    ============================================================================== 深入linux kernel内核配置选项 ...

  5. 重拾ZOJ 一周解题

    ZOJ 2734 Exchange Cards 题目大意: 给定一个值N,以及一堆卡片,每种卡片有一个值value和数量number.求使用任意张卡片组成N的方式. 例如N = 10 ,cards(1 ...

  6. ZOJ 2475 Benny's Compiler(dfs判断有向图给定点有没有参与构成环)

    B - Benny's Compiler Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu ...

  7. MongoDB Java Driver操作指南

    MongoDB为Java提供了非常丰富的API操作,相比关系型数据库,这种NoSQL本身的数据也有点面向对象的意思,所以对于Java来说,Mongo的数据结构更加友好. MongoDB在今年做了一次重 ...

  8. c#操作MangoDB 之MangoDB CSharp Driver驱动详解

    序言 MangoDB CSharp Driver是c#操作mongodb的官方驱动. 官方Api文档:http://api.mongodb.org/csharp/2.2/html/R_Project_ ...

  9. Java JDBC Thin Driver 连接 Oracle 三种方法说明(转载)

    一.JDBC 连接Oracle 说明 JDBC 的应用连接Oracle 遇到问题,错误如下: ORA-12505,TNS:listener does not currently know of SID ...

随机推荐

  1. delphi高手突破学习笔记之面向对象类和对象的本质(有汇编解释 good)

    知识点1:堆和栈 每个应用程序可以获得的内存空间分为两种:堆(heap)和栈(stack). 堆又称为“自由存储区”,其中的内存空间的分配与释放是必须由程序员来控制的.例如,用GetMem函数获取了一 ...

  2. 【REDO】删除REDO LOG重做日志组后需要手工删除对应的日志文件(转)

    为保证重新创建的日志组成员可以成功创建,我们在删除日志组后需要手工删除对应的日志文件. 1.查看数据库当前REDO LOG日志相关信息1)查看日志组信息sys@ora10g> select * ...

  3. UpdatePanel和jQuery不兼容

    在做项目中发现,在使用了UpdatePanel的地方,局部刷新后,jquery失效了. 后来网上一查,才发现,jquery中的ready事件会在DOM完全加载后运行一次,而当我们实用了UpdatePa ...

  4. 如何在myeclipse有个项目文件很多,我想找一段代码,怎么查找?

    然后输入要找的文字 然后在File name pathherns 中写 *.java 如果有多个就可以用逗号分隔! 然后 search

  5. [poj 1904]King's Quest[Tarjan强连通分量]

    题意:(当时没看懂...) N个王子和N个女孩, 每个王子喜欢若干女孩. 给出每个王子喜欢的女孩编号, 再给出一种王子和女孩的完美匹配. 求每个王子分别可以和那些女孩结婚可以满足最终每个王子都能找到一 ...

  6. ASP.NET - 后台获取按钮绑定的值CommandArgument

    <asp:LinkButton runat="server" ID="resumelbtn" CommandArgument='<%# Eval(& ...

  7. cocos2d-x lua 内存回收

    使用cocos2d-x lua架构,游戏中存在两种内存回收方式. 1.cocos2d-x 本身内存回收 PS:假设在lua在创建一个类,继承cocos2d-x的一个类A,则该A也遵循cocos2d-x ...

  8. HashSet的排序

    import java.util.ArrayList; import java.util.Collections; import java.util.HashSet; import java.util ...

  9. QT5静态编译教程,主要针对vs2012(渡世白玉)

    QT5,VS2012静态编译,所有的库准备充分的话qwebkit也可以静态编译通过,但是我编译的版本使用中如果用了QWEBVIEW控件在连接时会出错. 注:我自己编译的环境是:win server 2 ...

  10. myBatis 基础测试 表关联关系配置 集合 测试

    myBatis 基础测试 表关联关系配置 集合 测试 测试myelipse项目源码 sql 下载 http://download.csdn.net/detail/liangrui1988/599388 ...