1.RDD介绍:

    RDD,弹性分布式数据集,即分布式的元素集合。在spark中,对所有数据的操作不外乎是创建RDD、转化已有的RDD以及调用RDD操作进行求值。在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化。
    Spark中的RDD就是一个不可变的分布式对象集合。每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上。RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象。
    用户可以使用两种方法创建RDD:读取一个外部数据集,或在驱动器程序中分发驱动器程序中的对象集合,比如list或者set。
    RDD的转化操作都是惰性求值的,这意味着我们对RDD调用转化操作,操作不会立即执行。相反,Spark会在内部记录下所要求执行的操作的相关信息。我们不应该把RDD看做存放着特定数据的数据集,而最好把每个RDD当做我们通过转化操作构建出来的、记录如何计算数据的指令列表。数据读取到RDD中的操作也是惰性的,数据只会在必要时读取。转化操作和读取操作都有可能多次执行。
2.创建RDD数据集
    (1)读取一个外部数据集
val input=sc.textFile(inputFileDir)
    (2)分发对象集合,这里以list为例
val lines =sc.parallelize(List("hello world","this is a test"));
3.RDD操作
(1)转化操作
    实现过滤器转化操作:
val lines =sc.parallelize(List("error:a","error:b","error:c","test"));
val errors=lines.filter(line => line.contains("error"));
errors.collect().foreach(println);
输出:
error:a
error:b
error:c
可见,列表list中包含词语error的表项都被正确的过滤出来了。
(2)合并操作
将两个RDD数据集合并为一个RDD数据集
接上述程序示例:
val lines =sc.parallelize(List("error:a","error:b","error:c","test","warnings:a"));
val errors=lines.filter(line => line.contains("error"));
val warnings =lines.filter(line => line.contains("warnings"));
val unionLines =errors.union(warnings);
unionLines.collect().foreach(println);
输出:
error:a
error:b
error:c
warning:a
可见,将原始列表项中的所有error项和warning项都过滤出来了。
(3)获取RDD数据集中的部分或者全部元素
①获取RDD数据集中的部分元素   .take(int num)  返回值List<T>   
获取RDD数据集中的前num项。
/**
* Take the first num elements of the RDD. This currently scans the partitions *one by one*, so
* it will be slow if a lot of partitions are required. In that case, use collect() to get the
* whole RDD instead.
*/
def take(num: Int): JList[T]

程序示例:接上

unionLines.take(2).foreach(println);
输出:
error:a
error:b
可见,输出了RDD数据集unionLines的前2项
②获取RDD数据集中的全部元素 .collect() 返回值 List<T>
程序示例:
val all =unionLines.collect();
all.foreach(println);
遍历输出RDD数据集unionLines的每一项
4.向spark传递函数
    在scala中,我们可以把定义的内联函数、方法的引用或静态方法传递给Spark,就像Scala的其他函数式API一样。我们还要考虑其他一些细节,必须所传递的函数及其引用的数据需要是可序列化的(实现了Java的Serializable接口)。除此之外,与Python类似,传递一个对象的方法或者字段时,会包含对整个对象的引用。我们可以把需要的字段放在一个局部变量中,来避免包含该字段的整个对象。
class searchFunctions (val query:String){
def isMatch(s: String): Boolean = {
s.contains(query)
}
def getMatchFunctionReference(rdd: RDD[String]) :RDD[String]={
//问题: isMach表示 this.isMatch ,因此我们需要传递整个this
rdd.filter(isMatch)
}
def getMatchesFunctionReference(rdd: RDD[String]) :RDD[String] ={
//问题: query表示 this.query ,因此我们需要传递整个this
rdd.flatMap(line => line.split(query))
}
def getMatchesNoReference(rdd:RDD[String]):RDD[String] ={
//安全,只把我们需要的字段拿出来放入局部变量之中
val query1=this.query;
rdd.flatMap(x =>x.split(query1)
)
}

}
5.针对每个元素的转化操作:
    转化操作map()接收一个函数,把这个函数用于RDD中的每个元素,将函数的返回结果作为结果RDD中对应的元素。关键词:转化
    转化操作filter()接受一个函数,并将RDD中满足该函数的元素放入新的RDD中返回。关键词:过滤
示例图如下所示:
①map()
计算RDD中各值的平方
val rdd=sc.parallelize(List(1,2,3,4));
val result=rdd.map(value => value*value);
println(result.collect().mkString(","));
输出:
1,4,9,16
filter()
② 去除RDD集合中值为1的元素:
val rdd=sc.parallelize(List(1,2,3,4));
val result=rdd.filter(value => value!=1);
println(result.collect().mkString(","));
结果:
2,3,4
我们也可以采取传递函数的方式,就像这样:
函数:
def filterFunction(value:Int):Boolean ={
value!=1
}
使用:
val rdd=sc.parallelize(List(1,2,3,4));
val result=rdd.filter(filterFunction);
println(result.collect().mkString(","));
③ 有时候,我们希望对每个输入元素生成多个输出元素。实现该功能的操作叫做flatMap()。和map()类似,我们提供给flatMap()的函数被分别应用到了输入的RDD的每个元素上。不过返回的不是一个元素,而是一个返回值序列的迭代器。输出的RDD倒不是由迭代器组成的。我们得到的是一个包含各个迭代器可以访问的所有元素的RDD。flatMap()的一个简单用途是将输入的字符串切分成单词,如下所示: 
val rdd=sc.parallelize(List("Hello world","hello you","world i love you"));
val result=rdd.flatMap(line => line.split(" "));
println(result.collect().mkString("\n"));
输出:
hello
world
hello
you
world
i
love
you
6.集合操作

RDD中的集合操作
函数
用途
RDD1.distinct()
生成一个只包含不同元素的新RDD。需要数据混洗。
RDD1.union(RDD2)
返回一个包含两个RDD中所有元素的RDD
RDD1.intersection(RDD2)
只返回两个RDD中都有的元素
RDD1.substr(RDD2)
返回一个只存在于第一个RDD而不存在于第二个RDD中的所有元素组成的RDD。需要数据混洗。
集合操作对笛卡尔集的处理:

RDD1.cartesian(RDD2)
返回两个RDD数据集的笛卡尔集
程序示例:生成RDD集合{1,2} 和{1,2}的笛卡尔集
val rdd1=sc.parallelize(List(1,2));
val rdd2=sc.parallelize(List(1,2));
val rdd=rdd1.cartesian(rdd2);
println(rdd.collect().mkString("\n"));
输出:
(1,1)
(1,2)
(2,1)
(2,2)
7.行动操作
(1)reduce操作
    reduce()接收一个函数作为参数,这个函数要操作两个RDD的元素类型的数据并返回一个同样类型的新元素。一个简单的例子就是函数+,可以用它来对我们的RDD进行累加。使用reduce(),可以很方便地计算出RDD中所有元素的总和,元素的个数,以及其他类型的聚合操作。
    以下是求RDD数据集所有元素和的程序示例:
val rdd=sc.parallelize(List(1,2,3,4,5,6,7,8,9,10));
val results=rdd.reduce((x,y) =>x+y);
println(results);
输出:55
(2)fold()操作
    接收一个与reduce()接收的函数签名相同的函数,再加上一个初始值来作为每个分区第一次调用时的结果。你所提供的初始值应当是你提供的操作的单位元素,也就是说,使用你的函数对这个初始值进行多次计算不会改变结果(例如+对应的0,*对应的1,或者拼接操作对应的空列表)。
    程序实例:
①计算RDD数据集中所有元素的和:
zeroValue=0;//求和时,初始值为0。
val rdd=sc.parallelize(List(1,2,3,4,5,6,7,8,9,10));
val results=rdd.fold(0)((x,y) =>x+y);
println(results);
②计算RDD数据集中所有元素的积:
zeroValue=1;//求积时,初始值为1。
val rdd=sc.parallelize(List(1,2,3,4,5,6,7,8,9,10));
val results=rdd.fold(1)((x,y) =>x*y);
println(results);
(3)aggregate()操作
    aggregate()函数返回值类型不必与所操作的RDD类型相同。
    与fold()类似,使用aggregate()时,需要提供我们期待返回的类型的初始值。然后通过一个函数把RDD中的元素合并起来放入累加器。考虑到每个节点是在本地进行累加的,最终,还需要提供第二个函数来将累加器两两合并。
以下是程序实例:
val rdd=sc.parallelize(List(1,2,3,4,5,6,7,8,9,10));
val result=rdd.aggregate((0,0))(
(acc,value) =>(acc._1+value,acc._2+1),
(acc1,acc2) => (acc1._1+acc2._1, acc1._2+acc2._2)
)
val average=result._1/result._2;
println(average)
输出:5
    最终返回的是一个Tuple2<int,int>对象, 他被初始化为(0,0),当遇到一个int值时,将该int数的值加到Tuple2对象的_1中,并将_2值加1,如果遇到一个Tuple2对象时,将这个Tuple2的_1和_2的值归并到最终返回的Tuple2值中去。
表格:对一个数据为{1,2,3,3}的RDD进行基本的RDD行动操作
函数名 目的 示例 结果
collect() 返回RDD的所有元素 rdd.collect() {1,2,3,3}
count() RDD的元素个数 rdd.count() 4
countByValue() 各元素在RDD中出现的次数 rdd.countByValue() {(1,1),
(2,1),
(3,2)
}
take(num) 从RDD中返回num个元素 rdd.take(2) {1,2}
top(num) 从RDD中返回最前面的num个元素 rdd.takeOrdered(2)(myOrdering) {3,3}
takeOrdered(num)
(ordering)
从RDD中按照提供的顺序返回最前面的num个元素
rdd.takeSample(false,1) 非确定的
takeSample(withReplacement,num,[seed]) 从RDD中返回任意一些元素 rdd.takeSample(false,1) 非确定的
reduce(func) 并行整合RDD中所有数据 rdd.reduce((x,y) => x+y)
9
fold(zero)(func) 和reduce()一样,但是需要提供初始值 rdd.fold(0)((x,y) => x+y)
9
aggregate(zeroValue)(seqOp,combOp) 和reduce()相似,但是通常返回不同类型的函数 rdd.aggregate((0,0))
((x,y) =>
 (x._1+y,x._2+1),
 (x,y)=>
(x._1+y._1,x._2+y._2)
)
(9,4)
foreach(func) 对RDD中的每个元素使用给定的函数 rdd.foreach(func)
8.持久化缓存
    因为Spark RDD是惰性求值的,而有时我们希望能多次使用同一个RDD。如果简单地对RDD调用行动操作,Spark每次都会重算RDD以及它的所有依赖。这在迭代算法中消耗格外大,因为迭代算法常常会多次使用同一组数据。
    为了避免多次计算同一个RDD,可以让Spark对数据进行持久化。当我们让Spark持久化存储一个RDD时,计算出RDD的节点会分别保存它们所求出的分区数据。
    出于不同的目的,我们可以为RDD选择不同的持久化级别。默认情况下persist()会把数据以序列化的形式缓存在JVM的堆空间中
                                                        不同关键字对应的存储级别表
级别
使用的空间
cpu时间
是否在内存
是否在磁盘
备注
MEMORY_ONLY
直接储存在内存
MEMORY_ONLY_SER
序列化后储存在内存里
MEMORY_AND_DISK
中等
部分
部分
如果数据在内存中放不下,溢写在磁盘上
MEMORY_AND_DISK_SER
部分
部分
数据在内存中放不下,溢写在磁盘中。内存中存放序列化的数据。
DISK_ONLY
直接储存在硬盘里面
程序示例:将RDD数据集持久化在内存中。
val rdd=sc.parallelize(List(1,2,3,4,5,6,7,8,9,10)).persist(StorageLevel.MEMORY_ONLY);
println(rdd.count())
println(rdd.collect().mkString(","));
RDD还有unpersist()方法,调用该方法可以手动把持久化的RDD从缓存中移除。
9.不同的RDD类型
  在scala中,将RDD转为由特定函数的RDD(比如在RDD[Double]上进行数值操作),是由隐式转换来自动处理的。这些隐式转换可以隐式地将一个RDD转为各种封装类,比如DoubleRDDFunctions(数值数据的RDD)和PairRDDFunctions(键值对RDD),这样我们就有了诸如mean()和variance()之类的额外的函数。
示例程序:
val rdd=sc.parallelize(List(1.0,2.0,3.0,4.0,5.0));
println(rdd.mean());
其实RDD[T]中并没有mean()函数,只是隐式转换自动将其转换为DoubleRDDFunctions。

spark RDD编程,scala版本的更多相关文章

  1. Spark—RDD编程常用转换算子代码实例

    Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]  ...

  2. Spark RDD编程-大数据课设

    目录 一.实验目的 二.实验平台 三.实验内容.要求 1.pyspark交互式编程 2.编写独立应用程序实现数据去重 3.编写独立应用程序实现求平均值问题 四.实验过程 (一)pyspark交互式编程 ...

  3. Spark RDD编程核心

    一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式 ...

  4. Spark RDD编程(博客索引,日常更新)

    本篇主要是记录自己在中解决RDD编程性能问题中查阅的论文博客,为我认为写的不错的建立索引方便查阅,我的总结会另立他篇 1)通过分区(Partitioning)提高spark性能https://blog ...

  5. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  6. Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)

    1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...

  7. spark 中的RDD编程 -以下基于Java api

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  8. Spark学习笔记2:RDD编程

    通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(a ...

  9. Spark编程模型(RDD编程模型)

    Spark编程模型(RDD编程模型) 下图给出了rdd 编程模型,并将下例中用 到的四个算子映射到四种算子类型.spark 程序工作在两个空间中:spark rdd空间和 scala原生数据空间.在原 ...

随机推荐

  1. Android media媒体库分析之:MediaProvider

    在做Android媒体应用程序时(Audio.Image.Video)需要对Android的媒体提供者(MediaProvider)做详细的分析,下面记录一下我的收获: 一.获取MediaProvid ...

  2. css div inline 与 span 区别

    不是说用了display:lnline就变内联原素 和span有区别更奇怪的是ff里面执行就没区别 <span style="">xxx</span> &l ...

  3. FragmentActivity

    子fragment 调用 FragmentActivity ((FragmentActivity) getActivity()).updateUnreadLabel(); FragmentActivi ...

  4. 转 layout_weight体验(实现按比例显示)

    http://www.cnblogs.com/zhmore/archive/2011/11/04/2236514.html 在android开发中LinearLayout很常用,LinearLayou ...

  5. base64编码的图片字节流存入html页面中的显示

    在图片数据中加载到一个img标签,并如下处理 <img src="data:image/png;base64,...

  6. Linux字符编码转换 UTF8转GB3212

    在LINUX上进行编码转换时,既可以利用iconv函数族编程实现,也可以利用iconv命令来实现,只不过后者是针对文件的,即将指定文件从一种编码转换为另一种编码.    一.利用iconv函数族进行编 ...

  7. LINQ to SQL语句之Union All/Union/Intersect和Top/Bottom和Paging和SqlMethods

    我们继续讲解LINQ to SQL语句,这篇我们来讨论Union All/Union/Intersect操作和Top/Bottom操作和Paging操作和SqlMethods操作 . Union Al ...

  8. Android音频系统之音频框架

    1.1 音频框架 转载请注明,From LXS, http://blog.csdn.net/uiop78uiop78/article/details/8796492 Android的音频系统在很长一段 ...

  9. CodeForces 616D Longest k-Good Segment

    用队列维护一下即可 #include<cstdio> #include<cstring> #include<queue> #include<algorithm ...

  10. Lazy Load, 延迟加载图片的 jQuery 插件 - NeoEase

    body { font-family: "Microsoft YaHei UI","Microsoft YaHei",SimSun,"Segoe UI ...