Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
??
once wrote an autobiography, which mentioned something about himself.
In his book, it said seven is his favorite number and he thinks that a
number can be divisible by seven can bring him good luck. On the other
hand, ?? abhors some other prime numbers and thinks a number x divided
by pi which is one of these prime numbers with a given remainder ai will
bring him bad luck. In this case, many of his lucky numbers are
sullied because they can be divisible by 7 and also has a remainder of
ai when it is divided by the prime number pi.
Now give you a pair of x
and y, and N pairs of ai and pi, please find out how many numbers
between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following
on n lines each contains two integers pi, ai where pi is the pirme and
?? abhors the numbers have a remainder of ai when they are divided by
pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14
 
 
Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
说出来你可能不信,现在我要分析这个问题,我的博客从来就不会有代码,除了模板代码,,,,
题意: 不懂的看看。。。
就是X-Y 中的除以pi,余数不能为ai,求这样的所有的数,,,
现在我再想的是是不是把所有的整除7的都算出来, 然后|!A1∩!A2∩......∩!An|  = sum-奇数的+偶数的组合,,就是典型的容斥原理啊。。。
!A1使我们要求的东西,,不如让!A1代表除以pi,余数不为ai的东西,然后A1就是代表除以pi余数=ai的情况。
sum=y/7-(x-1)/7;   然后我们现在的重中之重就是求A1 这个东西怎么求,,,,我们注意到的东西就是0<pi<1e5;  但是我们发现了一个小小点的问题,,,
如果x%p[i]=y; 这个y在前面出现过那么的话 ,我们设前一个modp[i]=y的数为s,那么(x+7)%p[i]=(s+7)%p[i]; 所以我们可以在1e5的时间找到modp[i]=a[i]的数,因为这个东西是有周期的啊、、、然后发现我好想发现的没有用的东西,然后这个题还是做不出来,然后就是看别人的代码想到了中国剩余定理,然后这个题好像还有一个小的trick ,就是说乘的时候会爆longlong 这他妈的就尴尬啊。。。然后根据我的判断现在只能二分乘法了。。。。
 
 
 
 
 
 
 
 
 
 

Lucky7(容斥原理)的更多相关文章

  1. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  2. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  3. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  4. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  5. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

  6. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  7. hdu-5768 Lucky7(容斥定理+中国剩余定理)

    题目链接: Lucky7 Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Pr ...

  8. Lucky7(hdu5768)

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  9. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

随机推荐

  1. iOS开发——NSDate(待续...)

    1.获取当前系统时间,毫秒级 - (void)viewDidLoad { [super viewDidLoad]; NSString *currentTime = [self getCurrentTi ...

  2. iOS开发中涉及的字体问题

    iOS中常见3种方法来控制字体,下面根据我在网上学习总结的内容发布(已完美避过所有坑,iOS8.4) 一.系统默认的设置字体方法(只对英文和数字生效的方法) 1.系统默认提供的字体主要是指UIFont ...

  3. kvm 动态挂载硬盘

    根据最新需求需要动态的给kvm下的windows虚拟机挂载硬盘,网上查看了很多资料终于试通了,在这里记录下方便自己回忆,同事可以给大家做做参考,如果有问题欢迎吐槽 环境:先说说我使用的环境,环境是使用 ...

  4. nodejs抓取数据一(列表抓取)

    纯属初学...有很多需要改进的地方,请多多指点... 目标是抓取58同城 这个大分类下的列表数据: http://cd.58.com/caishui/?PGTID=14397169455980.924 ...

  5. 查看Linux最近重启的时间

    最近实验室老是掉电,想查看服务器什么时候重启的,于是在网上找了一些资料.有两种方式可以查看服务器重启. (1) who -b (2) last reboot |head -1

  6. .NET Core installation guide

      .NET Core installation guide 1.Download Visual Studio 2015 Make sure you have Visual Studio 2015 U ...

  7. EverNote剪藏插件安装问题

    安装EverNote印象笔记的剪藏插件时出现插件不能使用的问题,可以采用如下的方法(可以参考知乎的解决办法:https://www.zhihu.com/question/29875051) (下载地址 ...

  8. cookie记忆换肤功能实战Demo

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  9. HDU-1275-两车追及或相遇问题(数学题目)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1275 这题是一个数学题目,知道两个公式那就好办了: 对头相遇时:time*(v1+v2)=d*(2*i ...

  10. 多线程和多进程的区别(C++)

    很想写点关于多进程和多线程的东西,我确实很爱他们.但是每每想动手写点关于他们的东西,却总是求全心理作祟,始终动不了手. 今天终于下了决心,写点东西,以后可以再修修补补也无妨. 一.为何需要多进程(或者 ...