Rabbit's String

Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 288    Accepted Submission(s): 108

Problem Description
Long long ago, there lived a lot of rabbits in the forest. One day, the king of the rabbit kingdom got a mysterious string and he wanted to study this string.



At first, he would divide this string into no more than k substrings. Then for each substring S, he looked at all substrings of S, and selected the one which has the largest dictionary order. Among those substrings selected in the second round, the king then
choose one which has the largest dictionary order, and name it as a "magic string".



Now he wanted to figure out how to divide the string so that the dictionary order of that "magic string" is as small as possible.
 
Input
There are at most 36 test cases.



For each test case, the first line contains a integer k indicating the maximum number of substrings the king could divide, and the second line is the original mysterious string which consisted of only lower letters.



The length of the mysterious string is between 1 and 105 and k is between 1 and the length of the mysterious string, inclusive.

  

The input ends by k = 0.
 
Output
For each test case, output the magic string.
 
Sample Input
3
bbaa
2
ababa
0
 
Sample Output
b
ba
Hint
For the first test case, the king may divide the string into "b", "b" and "aa".
For the second test case, the king may divide the string into "aba" and "ba".
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  5053 5052 5051 5050 

pid=5049" target="_blank">5049 

 题意:
给你一个长度不超过1e5的串。

你最多能够把它切成k个连续的子串。然后对于切出来的子串拿出他们子串字典序最大的那个(子串的子串)。

然后把全部拿出来的子串的子串字典序最大的那个串叫魔法串。

如今要你输出字典序最小的魔法串。

思路:
最大中的最小。非常easy想到二分(如今都是条件反射了)。首先我们求出sa,height。然后就能够求出f[i]即排名前i的后缀中有多少个不同的子串。然后我们二分魔法串的排名。通过排名我们能够借助f数组定位魔法串所属后缀的排名pos和魔法串的长度len。如今要解决的是怎么推断方案是否可行了。对于排名大于pos的后缀x假设tp=lcp(pos,x)=0肯定无解。无论怎么切都没用。否则我们能够在[sa[x],sa[x]+tp-1]选个位置切一刀。对于pos后的后缀都标记一次。然后贪心来切。看最少切多少刀。然后就能够判定了。

具体见代码:
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=100010;
typedef long long ll;
char txt[maxn];
int sa[maxn],T1[maxn],T2[maxn],ct[maxn],he[maxn],rk[maxn],n,m,cut;
int mk[maxn];
ll f[maxn],ans;
void getsa(char *st)
{
int i,k,p,*x=T1,*y=T2;
for(i=0; i<m; i++) ct[i]=0;
for(i=0; i<n; i++) ct[x[i]=st[i]]++;
for(i=1; i<m; i++) ct[i]+=ct[i-1];
for(i=n-1; i>=0; i--)
sa[--ct[x[i]]]=i;
for(k=1,p=1; p<n; k<<=1,m=p)
{
for(p=0,i=n-k; i<n; i++) y[p++]=i;
for(i=0; i<n; i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(i=0; i<m; i++) ct[i]=0;
for(i=0; i<n; i++) ct[x[y[i]]]++;
for(i=1; i<m; i++) ct[i]+=ct[i-1];
for(i=n-1; i>=0; i--) sa[--ct[x[y[i]]]]=y[i];
for(swap(x,y),p=1,x[sa[0]]=0,i=1; i<n; i++)
x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p-1:p++;
}
}
void gethe(char *st)
{
int i,j,k=0;
for(i=0;i<n;i++) rk[sa[i]]=i;
for(i=0;i<n-1;i++)
{
if(k) k--;
j=sa[rk[i]-1];
while(st[i+k]==st[j+k]) k++;
he[rk[i]]=k;
}
}
bool isok(ll p)
{
int pos,len,i,pp,cnt;
pos=lower_bound(f+1,f+1+n,p)-f;//定位sa
len=he[pos]+p-f[pos-1];//确定串长
for(i=0;i<n;i++)
mk[i]=-1;
if(n-sa[pos]>len)//看自己所属后缀是否要切
mk[sa[pos]]=sa[pos]+len-1;
for(i=pos+1;i<=n;i++)
{
if(he[i]==0)
return false;
len=min(len,he[i]);//lcp
mk[sa[i]]=sa[i]+len-1;//排序比pos大一定要切割。 }
pp=n,cnt=0;
for(i=0;i<n;i++)
{
if(mk[i]!=-1)//能不切先不切和后面的一起切。贪心的思想。
pp=min(pp,mk[i]);
if(pp==i)
{
cnt++;
if(cnt>cut)
return false;
pp=n;
}
}
return cnt<cut;//切cnt次就是cnt+1块。 }
int main()
{
int i,pos,len;
ll low,hi,mid; while(scanf("%d",&cut),cut)
{
scanf("%s",txt);
n=strlen(txt)+1;
m=128;
getsa(txt);
gethe(txt);
n--;
f[1]=n-sa[1];
for(i=2;i<=n;i++)
f[i]=f[i-1]+n-sa[i]-he[i];
low=1,hi=f[n],ans=1;
while(low<=hi)
{
mid=(low+hi)>>1;
if(isok(mid))
ans=mid,hi=mid-1;
else
low=mid+1;
}
pos=lower_bound(f+1,f+1+n,ans)-f;
len=he[pos]+ans-f[pos-1];
txt[sa[pos]+len]=0;
printf("%s\n",txt+sa[pos]);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

hdu 5030 Rabbit&#39;s String(后缀数组&amp;二分法)的更多相关文章

  1. hdu 3553 Just a String (后缀数组)

    hdu 3553 Just a String (后缀数组) 题意:很简单,问一个字符串的第k大的子串是谁. 解题思路:后缀数组.先预处理一遍,把能算的都算出来.将后缀按sa排序,假如我们知道答案在那个 ...

  2. HDU 5030 Rabbit's String

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5030 题意:给出一个长度为n的串S,将S分成最多K个子串S1,S2,……Sk(k<=K).选出每 ...

  3. hdu 6194 沈阳网络赛--string string string(后缀数组)

    题目链接 Problem Description Uncle Mao is a wonderful ACMER. One day he met an easy problem, but Uncle M ...

  4. HDU 6194 string string string (后缀数组)

    题意:给定一个字符串,问你它有多少个子串恰好出现 k 次. 析:后缀数组,先把height 数组处理出来,然后每次取 k 个进行分析,假设取的是 i ~ i+k-1,那么就有重复的,一个是 i-1 ~ ...

  5. HDU 1403 Longest Common Substring(后缀数组,最长公共子串)

    hdu题目 poj题目 参考了 罗穗骞的论文<后缀数组——处理字符串的有力工具> 题意:求两个序列的最长公共子串 思路:后缀数组经典题目之一(模版题) //后缀数组sa:将s的n个后缀从小 ...

  6. Hackerrank--Ashton and String(后缀数组)

    题目链接 Ashton appeared for a job interview and is asked the following question. Arrange all the distin ...

  7. HDU 4777 Rabbit Kingdom(树状数组)

    HDU 4777 Rabbit Kingdom 题目链接 题意:给定一些序列.每次询问一个区间,求出这个区间和其它数字都互质的数的个数 #include <cstdio> #include ...

  8. HDU - 6223 Infinite Fraction Path (倍增+后缀数组)

    题意:给定一个长度为n(n<=150000)的字符串,每个下标i与(i*i+1)%n连边,求从任意下标出发走n步能走出的字典序最大的字符串. 把下标看成结点,由于每个结点有唯一的后继,因此形成的 ...

  9. POJ3729 Facer’s string 后缀数组

                                                                                                      Fa ...

随机推荐

  1. ZooKeeper场景实践:(2)集中式配置管理

    1. 基本介绍 在分布式的环境中,可能会有多个对等的程序读取相同的配置文件,程序能够部署在多台机器上,假设配置採用文件的话,则须要为部署该程序的机器也部署一个配置文件,一旦要改动配置的时候就会很麻烦, ...

  2. Windows下文件或文件夹不能删除时的解决办法

    windows在删除文件或文件夹时,提示文件或文件夹被占用而无法删除 解决办法:win7: winxp:需要借助第三方工具Unlocker.360.Process Explorer(这个是微软支持的) ...

  3. Java 二次MD5 32位小写加密算法与php页面加密结果相同

    最近做的一个项目需要使用MD5加密算法,需要加密的参数有两个.自己先试了几次,算的结果为php页面的不一样,后来与写php页面的同事沟通后,了解到php页面的算法如下: action = " ...

  4. codeforces55D数位dp

    codeforces55D 查询给定区间内的beautiful number.  一个数字是beautiful number当且仅当能被自己的各个数字不为0的位整除. 这个dp的状态还是挺难想的.一个 ...

  5. ECLIPSE JSP TOMCAT 环境搭建

    ECLIPSE JSP TOMCAT 环境搭建(完整) 要学习一门语言,首先要做的就是搭建环境,然后能写一个小的Demo(类似Helloworld),不仅可以建立信心,而且还可以为之后的学习搭建一个验 ...

  6. u-boot: Error: Can&#39;t overwrite &quot;ethaddr&quot;

    When try to execute following command, It reports error as following: --->8--- U-Boot> setenv ...

  7. android创建自定义对话框

    创建如下自定义对话框: JAVA代码 LayoutInflater li = LayoutInflater.from(TagActivity. this);  //NOTE final View Te ...

  8. AC automation 模板

    /* 1.对n个字符串构造tire树 insertWord(node *root, char *word); 2.bfs构造fail指针 makeFail(node *root); 3.基于以上两点的 ...

  9. oracle转mysql总结(转)

    ares-sdk初始开发测试使用的是oracle数据库,由于宁波通商的特殊需要,必须把数据库环境从oracle转向mysql. 现对转换过程中出现的问题及经验总结如下: 主键生成策略 创建一个专门记录 ...

  10. Java笔试题1

    1. 下面的代码执行后,什么结果输出是? String s1 = new String("Test"); String s2 = new String("Test&quo ...