java OPENCV 连通域, Imgproc.findContours 例子,参数说明
http://stackoverflow.com/questions/29491669/real-time-paper-sheet-detection-using-opencv-in-android/29492699#29492699
at srcImg; //you may want to apply Canny or some threshold before searching for contours
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy;
Imgproc.findContours(srcImg, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
MatOfPoint2f mat2fsrc, mat2fdst;
Scalar color = new Scalar(250, 250, 255);
for (int i = 0; i < contours.size(); i++) {
contours.get(i).convertTo(mat2fsrc, CvType.CV_32FC2);
Imgproc.approxPolyDP(mat2fsrc, mat2fdst, 0.01 * Imgproc.arcLength(mat2fsrc, true), true);
mat2fdst.convertTo(contours.get(i), CvType.CV_32S);
Imgproc.drawContours(srcImg, contours, i, color, 2, 8, hierarchy, 0, new Point());
}
===================================================================================================================================================================================================================
http://stackoverflow.com/questions/23134304/crop-out-part-from-images-findcontours-opencv-java
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// reading image
Mat image = Highgui.imread(".\\testing2.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
// clone the image
Mat original = image.clone();
// thresholding the image to make a binary image
Imgproc.threshold(image, image, 100, 128, Imgproc.THRESH_BINARY_INV);
// find the center of the image
double[] centers = {(double)image.width()/2, (double)image.height()/2};
Point image_center = new Point(centers);
// finding the contours
ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(image, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
// finding best bounding rectangle for a contour whose distance is closer to the image center that other ones
double d_min = Double.MAX_VALUE;
Rect rect_min = new Rect();
for (MatOfPoint contour : contours) {
Rect rec = Imgproc.boundingRect(contour);
// find the best candidates
if (rec.height > image.height()/2 & rec.width > image.width()/2)
continue;
Point pt1 = new Point((double)rec.x, (double)rec.y);
Point center = new Point(rec.x+(double)(rec.width)/2, rec.y + (double)(rec.height)/2);
double d = Math.sqrt(Math.pow((double)(pt1.x-image_center.x),2) + Math.pow((double)(pt1.y -image_center.y), 2));
if (d < d_min)
{
d_min = d;
rect_min = rec;
}
}
// slicing the image for result region
int pad = 5;
rect_min.x = rect_min.x - pad;
rect_min.y = rect_min.y - pad;
rect_min.width = rect_min.width + 2*pad;
rect_min.height = rect_min.height + 2*pad;
Mat result = original.submat(rect_min);
Highgui.imwrite("result.png", result);
===================================================================================================
参数说明 (maybe c/C++)
http://blog.csdn.net/augusdi/article/details/9011477
image:
输入的 8-比特、单通道图像. 非零元素被当成 1, 0 象素值保留为 0 - 从而图像被看成二值的。为了从灰度图像中得到这样的二值图像,可以使用 cvThreshold, cvAdaptiveThreshold 或 cvCanny. 本函数改变输入图像内容。
storage:
得到的轮廓的存储容器
first_contour:
输出参数:包含第一个输出轮廓的指针
header_size:
如果 method=CV_CHAIN_CODE,则序列头的大小 >=sizeof(CvChain),否则 >=sizeof(CvContour) .
mode:
提取模式.
CV_RETR_EXTERNAL - 只提取最外层的轮廓
CV_RETR_LIST - 提取所有轮廓,并且放置在 list 中
CV_RETR_CCOMP - 提取所有轮廓,并且将其组织为两层的 hierarchy: 顶层为连通域的外围边界,次层为洞的内层边界。
CV_RETR_TREE - 提取所有轮廓,并且重构嵌套轮廓的全部 hierarchy
method:
逼近方法 (对所有节点, 不包括使用内部逼近的 CV_RETR_RUNS).
CV_CHAIN_CODE - Freeman 链码的输出轮廓. 其它方法输出多边形(定点序列).
CV_CHAIN_APPROX_NONE - 将所有点由链码形式翻译(转化)为点序列形式
CV_CHAIN_APPROX_SIMPLE - 压缩水平、垂直和对角分割,即函数只保留末端的象素点;
CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS - 应用 Teh-Chin 链逼近算法. CV_LINK_RUNS - 通过连接为 1 的水平碎片使用完全不同的轮廓提取算法。仅有 CV_RETR_LIST 提取模式可以在本方法中应用.
offset:
每一个轮廓点的偏移量. 当轮廓是从图像 ROI 中提取出来的时候,使用偏移量有用,因为可以从整个图像上下文来对轮廓做分析.
函数 cvFindContours 从二值图像中提取轮廓,并且返回提取轮廓的数目。指针 first_contour 的内容由函数填写。它包含第一个最外层轮廓的指针,如果指针为 NULL,则没有检测到轮廓(比如图像是全黑的)。其它轮廓可以从 first_contour 利用 h_next 和 v_next 链接访问到。 在 cvDrawContours 的样例显示如何使用轮廓来进行连通域的检测。轮廓也可以用来做形状分析和对象识别 - 见CVPR2001 教程中的 squares 样例。该教程可以在 SourceForge 网站上找到。
DrawContours 在图像中绘制外部和内部的轮廓。
- void cvDrawContours( CvArr *img, CvSeq* contour,CvScalar external_color, CvScalar hole_color,int max_level, int thickness=1,int line_type=8, CvPoint offset=cvPoint(0,0) );
img:
用以绘制轮廓的图像。和其他绘图函数一样,边界图像被感兴趣区域(ROI)所剪切。
contour:
指针指向第一个轮廓。
external_color:
外层轮廓的颜色。
hole_color:
内层轮廓的颜色。
max_level:
绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓。如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种。如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓。
thickness:
绘制轮廓时所使用的线条的粗细度。如果值为负(e.g. =CV_FILLED),绘制内层轮廓。
line_type:
线条的类型。参考cvLine.
offset:
照给出的偏移量移动每一个轮廓点坐标.当轮廓是从某些感兴趣区域(ROI)中提取的然后需要在运算中考虑ROI偏移量时,将会用到这个参数。
当thickness>=0,函数cvDrawContours在图像中绘制轮廓,或者当thickness<0时,填充轮廓所限制的区域。
- #include <stdio.h>
- #include <cv.h>
- #include <cxcore.h>
- #include <highgui.h>
- #pragma comment(lib, "cv.lib")
- #pragma comment(lib, "cxcore.lib")
- #pragma comment(lib, "highgui.lib")
- // 内轮廓填充
- // 参数:
- // 1. pBinary: 输入二值图像,单通道,位深IPL_DEPTH_8U。
- // 2. dAreaThre: 面积阈值,当内轮廓面积小于等于dAreaThre时,进行填充。
- void FillInternalContours(IplImage *pBinary, double dAreaThre)
- {
- double dConArea;
- CvSeq *pContour = NULL;
- CvSeq *pConInner = NULL;
- CvMemStorage *pStorage = NULL;
- // 执行条件
- if (pBinary)
- {
- // 查找所有轮廓
- pStorage = cvCreateMemStorage(0);
- cvFindContours(pBinary, pStorage, &pContour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
- // 填充所有轮廓
- cvDrawContours(pBinary, pContour, CV_RGB(255, 255, 255), CV_RGB(255, 255, 255), 2, CV_FILLED, 8, cvPoint(0, 0));
- // 外轮廓循环
- int wai = 0;
- int nei = 0;
- for (; pContour != NULL; pContour = pContour->h_next)
- {
- wai++;
- // 内轮廓循环
- for (pConInner = pContour->v_next; pConInner != NULL; pConInner = pConInner->h_next)
- {
- nei++;
- // 内轮廓面积
- dConArea = fabs(cvContourArea(pConInner, CV_WHOLE_SEQ));
- printf("%f\n", dConArea);
- }
- CvRect rect = cvBoundingRect(pContour,0);
- cvRectangle(pBinary, cvPoint(rect.x, rect.y), cvPoint(rect.x + rect.width, rect.y + rect.height),CV_RGB(255,255, 255), 1, 8, 0);
- }
- printf("wai = %d, nei = %d", wai, nei);
- cvReleaseMemStorage(&pStorage);
- pStorage = NULL;
- }
- }
- int Otsu(IplImage* src)
- {
- int height=src->height;
- int width=src->width;
- //histogram
- float histogram[256] = {0};
- for(int i=0; i < height; i++)
- {
- unsigned char* p=(unsigned char*)src->imageData + src->widthStep * i;
- for(int j = 0; j < width; j++)
- {
- histogram[*p++]++;
- }
- }
- //normalize histogram
- int size = height * width;
- for(int i = 0; i < 256; i++)
- {
- histogram[i] = histogram[i] / size;
- }
- //average pixel value
- float avgValue=0;
- for(int i=0; i < 256; i++)
- {
- avgValue += i * histogram[i]; //整幅图像的平均灰度
- }
- int threshold;
- float maxVariance=0;
- float w = 0, u = 0;
- for(int i = 0; i < 256; i++)
- {
- w += histogram[i]; //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例
- u += i * histogram[i]; // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值
- float t = avgValue * w - u;
- float variance = t * t / (w * (1 - w) );
- if(variance > maxVariance)
- {
- maxVariance = variance;
- threshold = i;
- }
- }
- return threshold;
- }
- int main()
- {
- IplImage *img = cvLoadImage("c://temp.jpg", 0);
- IplImage *bin = cvCreateImage(cvGetSize(img), 8, 1);
- int thresh = Otsu(img);
- cvThreshold(img, bin, thresh, 255, CV_THRESH_BINARY);
- FillInternalContours(bin, 200);
- cvNamedWindow("img");
- cvShowImage("img", img);
- cvNamedWindow("result");
- cvShowImage("result", bin);
- cvWaitKey(-1);
- cvReleaseImage(&img);
- cvReleaseImage(&bin);
- return 0;
- }
这种情况下,大月亮内部的两个内轮廓没有框出来。这个不是因为我的 rect框是 白色的缘故。。。。应该。
我断点试了,就 cvRectangle 了 4次···
- #include <stdio.h>
- #include <cv.h>
- #include <highgui.h>
- #include <math.h>
- #pragma comment(lib, "cv.lib")
- #pragma comment(lib, "cxcore.lib")
- #pragma comment(lib, "highgui.lib")
- int main(int argc, char* argv[])
- {
- IplImage *src = cvLoadImage(".\\test.png", 0);
- IplImage *dsw = cvCreateImage(cvGetSize(src), 8, 1);
- IplImage *dst = cvCreateImage(cvGetSize(src), 8, 3);
- CvMemStorage *storage = cvCreateMemStorage(0);
- CvSeq *first_contour = NULL;
- //turn the src image to a binary image
- //cvThreshold(src, dsw, 125, 255, CV_THRESH_BINARY_INV);
- cvThreshold(src, dsw, 100, 255, CV_THRESH_BINARY);
- cvFindContours(dsw, storage, &first_contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
- cvZero(dst);
- int cnt = 0;
- for(; first_contour != 0; first_contour = first_contour->h_next)
- {
- cnt++;
- CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);
- cvDrawContours(dst, first_contour, color, color, 0, 2, CV_FILLED, cvPoint(0, 0));
- CvRect rect = cvBoundingRect(first_contour,0);
- cvRectangle(dst, cvPoint(rect.x, rect.y), cvPoint(rect.x + rect.width, rect.y + rect.height),CV_RGB(255, 0, 0), 1, 8, 0);
- }
- printf("the num of contours : %d\n", cnt);
- cvNamedWindow( "Source", 1 );
- cvShowImage( "Source", src );
- cvNamedWindow( "dsw", 1 );
- cvShowImage( "dsw", dsw );
- cvNamedWindow( "Components", 1 );
- cvShowImage( "Components", dst );
- cvReleaseMemStorage(&storage);
- cvWaitKey(-1);
- return 0;
- }
这种情况下 内轮廓也框出来了。。。。。
看来阈值的选择与想要的结果有很大关系哦。
如何适应不同的图片呢?????????????????
还有,每幅图片里面,最大的轮廓是整幅图像,可以根据其面积最大,去除 哦~~~修改如下:
area = fabs(cvContourArea(first_contour, CV_WHOLE_SEQ)); //cal the hole's area
在写后面那个 内轮廓填充的时候,才发现, dsw 是我二值化之后的图像,很明显不应该是这样子的呀。
我把 关于 Contours 的函数删除之后 又 恢复正常了。不知道为嘛呢。 很显然查出来的轮廓是 正确二值化之后的吧。 不知道为嘛会这样显示呢。
再看另一个图的结果:
总有 9 个轮廓。
另外,计算了下,每个大轮廓内部的 小轮廓的数目 conner ,结果显示都为0.
看看第一个大五角星。 应该是把 边边作为了一个轮廓, 把 内部 黑色区域作为一个 轮廓 了吧????
还有,这幅图片 没有被当做一个大轮廓,上面那个小猫的,整幅图片被框了一下啊。。。。。。。。。。。。
另外i, 把 关于 cvFindContours && cvDrawContours 两个函数部分删除,二值化结果如下:
==========================================================================================================================================
http://bbs.csdn.net/topics/391037090
向各位老师请教opencv中findContours获取轮廓大小时
debug的时候double area = cv::contourArea(contours[i]);这里就出错了,好像是内存问题,这是出错的 |
|
#1 得分:20回复于: 2015-05-16 19:28:54
对容器contours进行了非法操作,contourArea(contours[i])报错,这里应该是你对容器进行了越界操作,可以follow一下此处i的值与contours的size的值
|
|
#2 得分:0回复于: 2015-05-16 19:32:27
重点关注follow一下for(size_t i = 0; i < contours.size(); i++)循环以及function contourArea(contours[i]) 进行了那些相关操作,来定位bug位置及原因;
|
|
|
#3 得分:20回复于: 2015-05-18 11:07:23
找到原因了,环境配置问题
|
|
#4 得分:0回复于: 2015-07-14 10:21:18
楼主,麻烦告知一下原因,我也出现这个问题了
|
|
#5 得分:0回复于: 2015-09-14 20:13:17
楼主,我也遇到这个问题,怎么处理?
|
|
#6 得分:0回复于: 2015-12-08 17:29:02
MFC工程说的mdd改成mtd
可是我的Qt工程怎么配置 |
java OPENCV 连通域, Imgproc.findContours 例子,参数说明的更多相关文章
- Imgproc.findContours函数
OpenCV里支持很多边缘提取的办法,可是如何在一幅图像里得到轮廓区域的参数呢,这就需要用到findContours函数,这个函数在OpenCV4Android的原型为: void org.openc ...
- [转载]findContours函数参数说明及相关函数
原文地址:findContours函数参数说明及相关函数作者:鸳都学童 findContours函数,这个函数的原型为: void findContours(InputOutputArray imag ...
- Atitit Java OpenCV 捕获视频
Atitit Java OpenCV 捕获视频 ,打开一段视频或默认的摄像头 有两种方法,一种是在定义类的时候,一种是用open()方法. 一. 读取视频序列 OpenCV提供了一个简便易用的框架以 ...
- java爬取网页内容 简单例子(2)——附jsoup的select用法详解
[背景] 在上一篇博文java爬取网页内容 简单例子(1)——使用正则表达式 里面,介绍了如何使用正则表达式去解析网页的内容,虽然该正则表达式比较通用,但繁琐,代码量多,现实中想要想出一条简单的正则表 ...
- Windows下RabbitMQ 的下载、配置、Java实现生产者和消费者例子
RabbitMQ是一个轻量级的消息代理中间件,支持多种消息通信协议,支持分布式部署,支持运行于多个操作系统,具有灵活.高可用等特性.RabbitMQ支持多种协议,其中最为重要的是高级消息队列协议(AM ...
- 实现直方图均衡化(java+opencv)
什么是直方图均衡化? 直方图均衡化是一种简单有效的图像增强技术,通过改变图像的直方图来改变图像中各像素的灰度,主要用于增强动态范围偏小的图像的对比度.原始图像由于其灰度分布可能集中在较窄的区间,造成图 ...
- Java+opencv实现人脸检测
版本 Java1.8 opencv3.4 代码: import java.awt.Graphics; import java.awt.image.BufferedImage; import javax ...
- java opencv 4.0.1安装配置
如果没有把dll扔到jdk会报错 Exception in thread "AWT-EventQueue-0" java.lang.UnsatisfiedLinkError: no ...
- Java Opencv 实现 中值滤波器
原理 Note 以下原理来源于Richard Szeliski 的著作 Computer Vision: Algorithms and Applications 以及 Learning OpenCV ...
随机推荐
- CentOS安装配置Tomcat7
1.下载apache-tomcat-7.0.62.tar.gz 2.解压:tar -zxvf apache-tomcat-7.0.62.tar.gz 3.配置环境变量: 进入安装目录:(/usr/lo ...
- 用xftp传送避免乱码问题
用xftp传送文件时,需要输入ip地址,可连通的端口号,采用sftp协议 输入数据库传送,属性binary,二进制 上传文件,图片中文名称正常显示等,需要该属性支持UTF-8
- lldpd-0.7.7代码解读(send_pdu部分)
此文档是经过逆序推到出的,可能有错误之处,敬请指教,谢谢. 1)interfaces_update 更新一些接口信息 2)levent_iface_subscribe 该接口通过socket通信(非阻 ...
- hdu 2503 a/b + c/d
Problem Description 给你2个分数,求他们的和,并要求和为最简形式. Input 输入首先包含一个正整数T(T<=1000),表示有T组测试数据,然后是T行数据,每行包含四 ...
- 查看当前目录每个文件的大小(linux)
du -sh * 查看当前目录每个文件的大小
- 【Machine Learning in Action --2】K-最近邻分类
1.K-近邻算法(KNN)概述 K-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理:存在一个样本数据集合(也称作训练样本集),并且样本集中每个数据都存在标签(即我们知道样本集中每一数据与 ...
- jquery为多个元素添加事件
html <c:forEach items="${modellist}" var="model" varStatus="status" ...
- 传统 Ajax 已死,Fetch 永生
原谅我做一次标题党,Ajax 不会死,传统 Ajax 指的是 XMLHttpRequest(XHR),未来现在已被 Fetch 替代. 最近把阿里一个千万级 PV 的数据产品全部由 jQuery 的 ...
- Jquery-根据标签的name属性,获取其value值。存入对象并且转换为Json数组
<li id="testinput" name="testinput" value="1" />分类1:标签1</li&g ...
- SVN-svn path not found: 404 Not Found
报错信息是本地找不到文件 因为我直接移动了项目中的java文件到别的目录,在SVN看来相当于变相的删掉了一个目录的文件,在另外一个目录新增文件, 但是移动文件SVN是不会做删除记录到日志文件中的,所以 ...