Problem Description
You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

 
Input
The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

 
Output
For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

 
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
 
Sample Output
20.000
0.000
73.834
题目大意:
给出球心的位置(x,y,z)和半径(r),如果两球相离那么两球之间的距离是两球心间的距离,否则两球之间的距离为0.要求所有的点都相连并输出最小的距离和。
如果知道了题意那么就好做了,其实就是求最小生成树的问题!!
#include<stdio.h>
#include<math.h>
typedef struct nn
{
double x,y,z,r,dist;
}NODE;
NODE node[105];
double map[105][105],INF=10000000.0;
int n,s[105];
void first()
{
for(int i=1;i<=n;i++)
{
s[i]=0; node[i].dist=INF;
for(int j=i+1;j<=n;j++)
map[i][j]=map[j][i]=INF;
}
}
void count_dist(NODE a,NODE b,int i,int j)
{
double d;
d=sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
if(d>a.r+b.r)
map[i][j]=map[j][i]=d-a.r-b.r;
else
map[j][i]=map[i][j]=0;
}
void count()
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
count_dist(node[i],node[j],i,j);
}
double Prim(int m)
{
int tm=m,k=1;
double min,sum;
s[m]=1;sum=0;
for(int i=2;i<=n;i++)
{
min=INF;
for(int j=1;j<=n;j++)
if(s[j]==0)
{
if(node[j].dist>map[tm][j])
node[j].dist=map[tm][j];
if(min>node[j].dist)
{
min=node[j].dist; m=j;
}
}
if(s[m]==0)
{
k++;s[m]=1; sum+=min;tm=m;
}
}
if(k==n)
return sum;
return 0.0;
}
int main()
{
while(scanf("%d",&n)>0&&n)
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].z,&node[i].r);
first();
count();
printf("%.3f\n",Prim(1));
}
}

POJ2031Building a Space Station (最小生成树之prim)的更多相关文章

  1. poj2031-Building a Space Station(最小生成树,kruskal,prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5874   Accepte ...

  2. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  3. POJ Building a Space Station 最小生成树

    Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15664   Accepted: 6865 Description You ...

  4. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj--2031--Building a Space Station(prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6635   Accepte ...

  7. POJ2031Building a Space Station

    http://poj.org/problem?id=2031 题意:你是空间站的一员,太空里有很多球形且体积不一的“小房间”,房间可能相距不近,也可能是接触或者甚至是重叠关系,所有的房间都必须相连,这 ...

  8. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  9. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

随机推荐

  1. MFC逆向-消息响应函数的定位

    MFC  ==   Microsoft Foundation Class,微软基础类库,他封装了Windows API以便用户更快速的开发界面功能程序然而该库及其庞大而复杂,需要有C++的功底否则很难 ...

  2. java jstack dump 线程 介绍 解释

    最近抽时间把JVM运行过程中产生的一些线程进行了整理,主要是围绕着我们系统jstack生成的文件为参照依据.  前段时间因为系统代码问题,造成性能到了天花板,于是就dump了一份stack出来进行分析 ...

  3. php前端控制器2

    Front Controllers act like centralized agents in an application whose primary area of concern is to ...

  4. 二、Mongo命令初识

    简单介绍mongo的一些基本命令 1.   连接与登陆mongo 在命令行输入“mongo”命令即可登陆Mongo数据库(PS:默认讨论被信任的环境,也就是不需要用户名和密码进行登陆). 查看当前所使 ...

  5. Corrupted MAC on input at /usr/local/perl/lib/site_perl/5.22.1/x86_64-linux/Net/SSH/Perl/Packet.pm l

    <pre name="code" class="python">[Thu May 5 11:02:27 2016] [error] Corrupte ...

  6. 基于visual Studio2013解决算法导论之028散列表开放寻址

     题目 散列表 解决代码及点评 #include <iostream> #include <time.h> using namespace std; template & ...

  7. 测试DOM0级事件和DOM2级事件的堆叠

    1. 问题 如果大家看过北风网CJ讲师的Javascript视频教程,就可以看到其封装了一个很强的事件添加和删除函数,如下所示 function addEvent(obj, evtype, fn) { ...

  8. DHTML【11】--DOM

    大家好,从今天开始,我们将进入DOM的学习. DOM?DOM是何东东呢?大家还记得我在前面提过的DOM树吗?就是我在前面讲HTML的时候画的那个图,那个其实就是一个简单的DOM树,浏览器在解析HTML ...

  9. boost/lexical_cast.hpp的简单使用方法_行动_新浪博客

    boost/lexical_cast.hpp的简单使用方法_行动_新浪博客     boost/lexical_cast.hpp的简单使用方法    (2010-03-19 16:31:13)    ...

  10. PredictionIO Open Source Machine Learning Server

    PredictionIO Open Source Machine Learning Server Build Smarter Software with Machine Learning Predic ...