Problem Description
You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

 
Input
The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

 
Output
For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

 
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
 
Sample Output
20.000
0.000
73.834
题目大意:
给出球心的位置(x,y,z)和半径(r),如果两球相离那么两球之间的距离是两球心间的距离,否则两球之间的距离为0.要求所有的点都相连并输出最小的距离和。
如果知道了题意那么就好做了,其实就是求最小生成树的问题!!
#include<stdio.h>
#include<math.h>
typedef struct nn
{
double x,y,z,r,dist;
}NODE;
NODE node[105];
double map[105][105],INF=10000000.0;
int n,s[105];
void first()
{
for(int i=1;i<=n;i++)
{
s[i]=0; node[i].dist=INF;
for(int j=i+1;j<=n;j++)
map[i][j]=map[j][i]=INF;
}
}
void count_dist(NODE a,NODE b,int i,int j)
{
double d;
d=sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
if(d>a.r+b.r)
map[i][j]=map[j][i]=d-a.r-b.r;
else
map[j][i]=map[i][j]=0;
}
void count()
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
count_dist(node[i],node[j],i,j);
}
double Prim(int m)
{
int tm=m,k=1;
double min,sum;
s[m]=1;sum=0;
for(int i=2;i<=n;i++)
{
min=INF;
for(int j=1;j<=n;j++)
if(s[j]==0)
{
if(node[j].dist>map[tm][j])
node[j].dist=map[tm][j];
if(min>node[j].dist)
{
min=node[j].dist; m=j;
}
}
if(s[m]==0)
{
k++;s[m]=1; sum+=min;tm=m;
}
}
if(k==n)
return sum;
return 0.0;
}
int main()
{
while(scanf("%d",&n)>0&&n)
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].z,&node[i].r);
first();
count();
printf("%.3f\n",Prim(1));
}
}

POJ2031Building a Space Station (最小生成树之prim)的更多相关文章

  1. poj2031-Building a Space Station(最小生成树,kruskal,prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5874   Accepte ...

  2. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  3. POJ Building a Space Station 最小生成树

    Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15664   Accepted: 6865 Description You ...

  4. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj--2031--Building a Space Station(prime)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6635   Accepte ...

  7. POJ2031Building a Space Station

    http://poj.org/problem?id=2031 题意:你是空间站的一员,太空里有很多球形且体积不一的“小房间”,房间可能相距不近,也可能是接触或者甚至是重叠关系,所有的房间都必须相连,这 ...

  8. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  9. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

随机推荐

  1. java jstack dump 线程 介绍 解释

    最近抽时间把JVM运行过程中产生的一些线程进行了整理,主要是围绕着我们系统jstack生成的文件为参照依据.  前段时间因为系统代码问题,造成性能到了天花板,于是就dump了一份stack出来进行分析 ...

  2. C++0x简讯

    关于C++0x核心进展的一组简讯 刘未鹏 /文 C++的罗浮宫(http://blog.csdn.net/pongba) Concepts无疑是C++0x的杀手级特性之中的一个(也许称它“杀手级”另一 ...

  3. 自己设计的SSO登录流程图

    这个图上不考虑安全加密.由于本身SSO流程图已经比較复杂了.可能还有问题,欢迎大家拍砖. 1.登录流程图: 2.退出流程图: 3.改进方面: 每一个应用登录后.直接将ticket写入session中, ...

  4. swift 关于 toolbar 学习笔记

    import UIKit class ViewController: UIViewController { @IBOutlet weak var toolBar: UIToolbar! @IBOutl ...

  5. Activity的创建和使用

    Activity: 1:创建一个类继承Activity或者它的子类 public class MainActivity extends Activity { @Override protected v ...

  6. log4cpp的初步使用

    (1)下载log4cpp的工程,编译生成lib文件和dll库 下载路径为:http://sourceforge.net/projects/log4cpp/files/latest/download 如 ...

  7. ZOJ 3594 年份水题 【注意:没有0年】

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  8. C语言中 移位操作运算

    移位规律: 左移时总是移位和补零.右移时无符号数是移位和补零,此时称为逻辑右移;而有符号数大多数情况下是移位后补最左边的位(也就是补最高有效位),移几位就补几位,此时称为算术右移.(其实跟扩展逻辑一样 ...

  9. webwervice发布时出错 java.security.PrivilegedActionException

    错误信息: 信息: Dynamically creating response wrapper bean Class com.potevio.ws.jaxws.DealReqResponse Exce ...

  10. 当JAVA集合移除自身集合元素时发生的诸多问题

    一段代码目的是想删除集合中包括"a"字符串的集合项: public class TestForeach { public static void main(String[] arg ...