mport java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class Driver {

public static class TokenizerMapper extends
            Mapper<Object, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

public static class IntSumReducer extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

public static class DependenceMapper extends
            Mapper<Object, Text, Text, Text> {
        private Text word = new Text();
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String []sep=value.toString().split("\t");
            word.set(sep[1]+"\t"+sep[0]);
            System.out.println(value.toString());
            context.write(word,new Text(""));
        }
    }

public static class DependenceReducer extends
            Reducer<Text,Text,Text,Text> {
        public void reduce(Text key, Iterable<Text> values,
                Context context) throws IOException, InterruptedException {
            String[] sep = key.toString().split("\t");
            System.out.println( sep[0]+"++++++++="+ sep[1]);
            context.write(key,new Text(""));
        }
    }

public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length < 2) {
            System.err.println("Usage: wordcount <in> <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "word count");
        //加入控制容器
        ControlledJob ctrljob1=new  ControlledJob(conf);
        ctrljob1.setJob(job);
        job.setJarByClass(Driver.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
//        job.waitForCompletion(true);

Configuration conf2 = new Configuration();
        Job job2 = new Job(conf2, "word count1");
         ControlledJob ctrljob2=new ControlledJob(conf);
            ctrljob2.setJob(job2);
            ctrljob2.addDependingJob(ctrljob1);
        job2.setJarByClass(Driver.class);
        job2.setMapperClass(DependenceMapper.class);
        job2.setReducerClass(DependenceReducer.class);
        job2.setOutputKeyClass(Text.class);
        job2.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job2, new Path(otherArgs[1]));
        FileOutputFormat.setOutputPath(job2, new Path(otherArgs[2]));
    //    job2.waitForCompletion(true);
          JobControl jobCtrl=new JobControl("myctrl");
          
            //添加到总的JobControl里,进行控制
            jobCtrl.addJob(ctrljob1);
            jobCtrl.addJob(ctrljob2);
            jobCtrl.run();
            
    }
}

mapreduce 依赖组合的更多相关文章

  1. Python 入门 之 类的三大关系(依赖 / 组合/ 继承关系)

    Python 入门 之 类的三大关系(依赖 / 组合/ 继承关系) 在面向对象的中,类与类之间存在三种关系:依赖关系.组合关系.继承关系. 1.依赖关系:将一个类的类名或对象当做参数传递给另一个函数被 ...

  2. mapreduce 顺序组合

    import java.io.IOException;import java.util.StringTokenizer; import org.apache.hadoop.conf.Configura ...

  3. 8、Situation-Dependent Combination of Long-Term and Session-Based Preferences in Group Recommendations: An Experimental Analysis ----组推荐中基于长期和会话偏好的情景依赖组合

    一.摘要: 背景:会话组推荐系统的一个主要挑战是如何适当地利用群组成员之间的交互引起用户偏好,这可能会偏离用户的长期偏好.长期偏好和群组诱导的偏好之间的相对重要性应该根据具体的群组设置而变化. 本文: ...

  4. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

  5. [大牛翻译系列]Hadoop(5)MapReduce 排序:次排序(Secondary sort)

    4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业( ...

  6. 【原创】MapReduce编程系列之二元排序

    普通排序实现 普通排序的实现利用了按姓名的排序,调用了默认的对key的HashPartition函数来实现数据的分组.partition操作之后写入磁盘时会对数据进行排序操作(对一个分区内的数据作排序 ...

  7. Mapreduce执行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部运行原理了,以前只知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本中的WordCount这个经典例子作为分析的切入点,一步步来看里面到底是个什么情 ...

  8. 大数据技术 —— MapReduce 简介

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在 ...

  9. Mapreduce运行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部执行原理了,曾经仅仅知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本号中的WordCount这个经典样例作为分析的切入点.一步步来看里面究竟是个什 ...

随机推荐

  1. apicloud

    <!doctype html> <html class="no-js"> <head> <meta charset="utf-8 ...

  2. Openjudge-计算概论(A)-第二个重复出现的数

    描述: 给定一个正整数数组(元素的值都大于零),输出数组中第二个重复出现的正整数,如果没有,则输出字符串"NOT EXIST". 输入第一行为整数m,表示有m组数据.其后每组数据分 ...

  3. JS中offsetTop、clientTop、scrollTop、offsetTop各属性介绍(转载)

    这里是JavaScript中制作滚动代码的常用属性 页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见 ...

  4. 使用计算监控(Using computed observables)

    计算监控(Computed Observables) 如果有两个监控属性firstName, lastName,此时我们要显示full name,我们要怎么办呢? 这时,可以创建一个computed ...

  5. do-while循环判断成绩的有效输入

    #include "stdio.h" void main() { int score; do { printf("请输入你的成绩(0-100):"); scan ...

  6. jail brak 获取当前安装app列表

    ios 5 6 7 可以通过解析"/private/var/mobile/Library/Caches/com.app.mobile.installation.plist" 文件获 ...

  7. 拦截asp.net输出流做处理, 拦截HTML文本(asp.net webForm版)

    对已经生成了HTML的页面做一些输出到客户端之前的处理 方法的原理是:把Response的输出重定向到自定义的容器内,也就是我们的StringBuilder对象里,在HTML所有的向页面输出都变 成了 ...

  8. mysql 中 SQL_CALC_FOUND_ROWS 功能

    mysql 数据库不符合sql标准的地方不少,比如TIMESTAMP列的处理,字符串比较默认大小写不敏感什么的.有时候这些问题会让你很郁闷,尤其是对从其它数据库转过来的人来说.但有些功能倒也蛮有趣. ...

  9. ios xcode中所有自带的字体如下(最好结合NSMutableAttributedString相结合使用)

    // 打印系统中所有字体的类型名字 NSArray *familyNames = [UIFont familyNames]; for(NSString *familyName in familyNam ...

  10. www.iis.net

    http://www.iis.net 这是一个神奇的网站 关于IIS的所有管理,在这里都能找到 今天,一个同事问我,  iis8 php的设置,一个环境变量的东西不知道怎么去设置, 然后我搜了下,在 ...